Publication database
Ultrashort Pulse Bursts for Surface Laser Polishing
Laser polishing offers numerous advantages, one of which is the convenience of using the same system for the
whole manufacturing process. In this work, an ultrashort pulse laser operating in a GHz burst regime was used to polish
stainless steel. The aim was to minimise surface roughness, characterised by the average roughness parameter Ra. Different
laser processing parameters (average laser power, number of pulses per burst, scanning speed, hatch size) were varied to polish
samples that were covered in laser-induced periodic surface structures (LIPSS). Thermal effects, such as melt layer formation,
were noticed and discussed. It was demonstrated that LIPSS can be erased and the initial surface roughness of 73 nm was
reduced to 41 nm using 100 pulses per burst and burst fluence of FB = 0.15 J/cm2.
Femtosecond Laser Cutting of 110–550 µm Thickness Borosilicate Glass in Ambient Air and Water
The cutting quality and strength of strips cut with femtosecond-duration pulses were investigated for different thicknesses of borosilicate glass plates. The laser pulse duration was 350 fs, and cutting was performed in two environments: ambient air and water. When cutting in water, a thin flowing layer of water was formed at the front surface of the glass plate by spraying water mist next to a laser ablation zone. The energy of pulses greatly exceeded the critical self-focusing threshold in water, creating conditions favorable for laser beam filament formation. Laser cutting parameters were individually optimized for different glass thicknesses (110–550 µm). The results revealed that laser cutting of borosilicate glass in water is favorable for thicker glass (300–550 µm) thanks to higher cutting quality, higher effective cutting speed, and characteristic strength. On the other hand, cutting ultrathin glass plates (110 µm thickness) demonstrated almost identical performance and cutting quality results in both environments. In this paper, we studied cut-edge defect widths, cut-sidewall roughness, cutting throughput, characteristic strength, and band-like damage formed at the back surface of laser-cut glass strips.
Laser-generated nanoparticles from Fe-based metallic glass in water and its amorphization control by pulsed laser processing
The laser synthesis and processing of colloids represents a group of scalable and “green” synthesis methods of crystalline metal oxides, that have recently made encouraging progresses in preparing amorphous as well as defect-rich nanoparticles. The relevant conditions and mechanisms that allow the design of amorphous metal oxides (AMOs) remain unknown. Consequently, in this work the synthesis of Fe-based partially amorphous oxide nanoparticles (NPs) by pulsed laser ablation in water was studied. Furthermore, both laser pulse duration and the number of laser pulse in pulsed laser fragmentation in liquid (LFL) allow a precise control of amorphization of AMOs in water. Hereby, a high-fluence nanosecond-LFL provides a significantly higher amorphization rate, whereas picosecond-LFL always presents minor fractions of crystalline α-Fe even with a higher specific energy input and laser intensity. Consequently, the laser fluence required for the repeated melting and quenching of NP appears to be the decisive parameter to control amorphization. During laser synthesis and processing of colloids, the amorphization of AMOs appears to be linked to the apparent size reduction effect, while a complete full amorphization of AMOs may be attributed to the stronger oxidation effects. This work will stimulate future studies using laser-generated AMO NPs for further functional purposes.
Thermal control of SZ2080 photopolymerization in four-beam interference lithography
Photopolymerization by four-beam interference lithography on a preheated SZ2080 sample was explored at different initial temperatures of the sample: 20 °C, 50 °C, 75 °C, 100 °C, 125 °C, and 150 °C, and at exposure times ranging from 0.5 s to 5 s. The average laser power selected was ∼100 mW for the 300 ps duration pulses at a 1 kHz repetition rate. The experimental results demonstrate that the higher initial temperature of the sample positively influences the crosslinking of the patterns. These findings will improve polymerization protocols for multi-beam interference lithography.
Engineering electrochemical sensors using nanosecond laser treatment of thin gold film on ITO glass
Direct generation of gold nanoparticles on ITO glass using a nanosecond laser is presented and the electrochemical properties of the gold modified ITO electrodes for detection of the ascorbic acid are analyzed. Gold nanoparticles were generated by nanosecond laser pulse irradiation of thin, 3–30 nm thick, gold films. It was found that diameters and the number of generated nanoparticles per unit area strongly depends on the thickness of the gold film when it is less than 10 nm. Furthermore, experiments have shown that the influence of laser processing parameters (the laser pulse energy and pulse number) to the size, the distribution and the area density of generated gold nanoparticles on ITO glass is negligible. Characterization of the electrochemical properties of the gold modified ITO electrodes by nanosecond laser showed that the fabricated electrodes could be employed in electrochemical sensing. Therefore, the demonstrated generation of gold nanoparticles on ITO by using the nanosecond laser approach opens new opportunities for the development of highly sensitive and low-cost electrochemical sensors.
Glass dicing with elliptical Bessel beam
In this paper the possibility to optimize the glass dicing process by controlling the axicon-generated Bessel beam ellipticity is presented. Single-shot intra-volume modifications in soda-lime glass followed by dicing experiments of 1 mm-thick samples are performed. The Bessel beam ellipticity is essential for glass dicing process. Such beam generates intra-volume modifications with transverse crack propagation in dominant direction. Orientation of these modifications parallel to the dicing direction gives significant advantages in terms of processing speed, glass breaking force and cutting quality.
Laser-Ablated Silicon in the Frequency Range From 0.1 to 4.7 THz
The optical performance of high-resistivity silicon with a laser-ablated surface was studied in the transmission mode in the frequency range of 0.1-4.7 THz. A reciprocal relationship between the transmission brightness and the surface roughness was observed at discrete THz frequencies. The measured dispersion was reproduced by the THz wave scattering theory using an effective refractive index model. No significant differences between the samples processed either with psor ns-duration laser pulses in ambient air or in argon enriched atmosphere were found in the THz regime. It was demonstrated that the majority of optical losses of the silicon with the laser modified surface were due to the scattering of THz waves and not due to the absorption in silicon-compounds formed during the laser ablation.
Laser-assisted selective copper deposition on commercial PA6 by catalytic electroless plating – Process and activation mechanism
Results of in-depth experimental analysis of the laser-assisted local copper deposition on commercial Polyamide 6 (PA 6) are presented. Pico- and nanosecond lasers were validated for surface modification of the polymer followed by silver (I) activation and finished by autocatalytic electroless copper plating on the laser-modified areas. Detailed investigations were dedicated to finding out the origin of selective metal plating, including the surface profiling and wettability dynamics, XPS analysis and electric resistance measurements of the deposited copper layer. Based on the experimental data, the mechanism of the polymer surface activation by the laser modification is proposed.
Mechanism of pillars formation using four-beam interference lithography
Three different experiments were performed in order to determine the mechanism of pillars formation using four-beam interference lithography. The experimental results demonstrate that pillars, fabricated in argon gas, were wider and higher compared with the pillars fabricated in nitrogen gas, low vacuum or air. It clearly indicates that the pillar bottom widening effect is not affected by the depletion of atmospheric oxygen as in all environments the fabricated pillars have a wider bottom part. Moreover, the shape of the fabricated pillars is not affecting by the back reflection from the positioning stage and by the light irradiation conditions. These results clearly indicate that the photopolymerization process is enhanced by the heat current and it determines the pillar bottom widening effect.
Raising the maximum power density of nanoporous catalyst film-based polymer-electrolyte-membrane fuel cells by laser micro-machining of the gas diffusion layer
Although nanoporous Pt film has been shown to be an effective catalyst for polymer electrolyte membrane (PEM) fuel cells, the maximum power density of the cell is limited by the optimal film thickness. When the Pt film thickness exceeds the optimal value, regions with good gas transport (the side near the gas diffusion layer (GDL)) separate from regions with good proton transport (the side near the PEM), so the current density and the power density drop with increasing film thickness. Here we demonstrate that this obstacle can be overcome by laser micro-machining the GDL. The picosecond laser fabricates grooves on the GDL surface to greatly increase the effective surface area for Pt deposition, thereby reducing the local Pt film thickness. A nearly two-fold increase in the power density is achieved by using laser micro-machined periodic grooves of 20 μm depth, reaching a 0.6-V power density of 853 mW cm−2 and a maximum power density of 1.2 W cm−2 with a cathode Pt loading of 200 μg cm−2. The results also indicate that further enhancement may be achieved by increasing the surface modulation depth/period ratio and by implementing a better way to fill the grooves with polymer electrolyte.