Publication database
High-Repetition-Rate Attosecond Extreme Ultraviolet Beamlines at ELI ALPS for Studying Ultrafast Phenomena
Advancements in light engineering have led to the creation of pulsed laser sources capable of delivering high-repetition-rate, high-power few-cycle laser pulses across a wide spectral range, enabling exploration of many fascinating nonlinear processes occurring in all states of matter. High-harmonic generation, one such process, which converts the low-frequency photons of the driver laser field into soft x-rays, has revolutionized atomic, molecular, and optical physics, leading to progress in attosecond science and ultrafast optoelectronics. The Extreme Light Infrastructure, Attosecond Light Pulse Source (ELI ALPS) facility pioneers state-of-the-art tools for research in these areas. This paper outlines the design rationale, capabilities, and applications of plasma- and gas-based high-repetition-rate (1 kHz to 100 kHz) attosecond extreme ultraviolet (XUV) beamlines developed at ELI ALPS, highlighting their potential for advancing various research fields.
Characterization and calibration of the Thomson scattering diagnostic suite for the C-2W field-reversed configuration experiment
The new C-2W Thomson scattering (TS) diagnostic consists of two individual subsystems for monitoring electron temperature (Te) and density (ne): one system in the central region is currently operational, and the second system is being commissioned to monitor the open field line region. Validating the performance of the TS’s custom designed system components and unique calibration of the detection system and diagnostic as a whole is crucial to obtaining high precision Te and ne profiles of C-2W’s plasma. The major components include a diode-pumped Nd:YAG laser which produces 35 pulses at up to 20 kHz, uniquely designed collection lenses with a fast numerical aperture, and uniquely designed polychromators with filters sets to optimize a Te ranging from 10 eV to 2 keV. This paper describes the design principles and techniques used to characterize the main components of the TS diagnostic on C-2W, as well as the results of Rayleigh scattering calibrations performed for the whole system response.
Conversion efficiency of a laser-plasma source based on a Xe jet in the vicinity of a wavelength of 11 nm
We optimized the parameters of a laser-produced plasma source based on a solid-state Nd: YAG laser (λ = 1.06 nm, pulse duration 4 ns, energy per pulse up to 500 mJ, repetition rate 10 Hz, lens focus distance 45 mm, maximum power density of laser radiation in focus 9 × 1011 W/cm2) and a double-stream Xe/He gas jet to obtain a maximum of radiation intensity around 11 nm wavelength. It was shown that the key factor determining the ionization composition of the plasma is the jet density. With the decreased density, the ionization composition shifts toward a smaller degree of ionization, which leads to an increase in emission peak intensity around 11 nm. We attribute the dominant spectral feature centred near 11 nm originating from an unidentified 4d-4f transition array in Xe+10…+13 ions. The exact position of the peak and the bandwidth of the emission line were determined. We measured the dependence of the conversion efficiency of laser energy into an EUV in-band energy with a peak at 10.82 nm from the xenon pressure and the distance between the nozzle and the laser focus. The maximum conversion efficiency (CE) into the spectral band of 10–12 nm measured at a distance between the nozzle and the laser beam focus of 0.5 mm was CE = 4.25 ± 0.30%. The conversion efficiencies of the source in-bands of 5 and 12 mirror systems at two wavelengths of 10.8 and 11.2 nm have been evaluated; these efficiencies may be interesting for beyond extreme ultraviolet lithography.
Spectral pulse shaping of a 5 Hz, multi-joule, broadband optical parametric chirped pulse amplification frontend for a 10 PW laser system
We present a broadband optical parametric chirped pulse amplification (OPCPA) system delivering 4 J pulses at a repetition rate of 5 Hz. It will serve as a frontend for the 1.5 kJ, <150 fs, 10 PW laser beamline currently under development by a consortium of National Energetics and Ekspla. The spectrum of the OPCPA system is precisely controlled by arbitrarily generated waveforms of the pump lasers. To fully exploit the high flexibility of the frontend, we have developed a 1D model of the system and an optimization algorithm that predicts suitable pump waveform settings for a desired output spectrum. The OPCPA system is shown to have high efficiency, a high-quality top-hat beam profile, and an output spectrum demonstrated to be shaped consistently with the theoretical model.
Thomson scattering systems on C-2W field-reversed configuration plasma experiment
TAE Technologies’ newly constructed C-2W experiment aims to improve the ion and electron temperatures in a sustained field-reversed configuration plasma. A suite of Thomson scattering systems has been designed and constructed for electron temperature and density profile measurements. The systems are designed for electron densities of 1 × 1012 cm−3 to 2 × 1014 cm−3 and temperature ranges from 10 eV to 2 keV. The central system will provide profile measurements of Te and ne at 16 radial locations from r = −9 cm to r = 64 cm with a temporal resolution of 20 kHz for 4 pulses or 1 kHz for 30 pulses. The jet system will provide profile measurements of Te and ne at 5 radial locations in the open field region from r = −5 cm to r = 15 cm with a temporal resolution of 100 Hz. The central system and its components have been characterized, calibrated, installed, and commissioned. A maximum-likelihood algorithm has been applied for data processing and analysis.
53 W average power CEP-stabilized OPCPA system delivering 5.5 TW few cycle pulses at 1 kHz repetition rate
We present a high peak and average power optical parametric chirped pulse amplification system driven by diode-pumped Yb:KGW and Nd:YAG lasers running at 1 kHz repetition rate. The advanced architecture of the system allows us to achieve \\&\\#x0003E;53 W average power combined with 5.5 TW peak power, along with sub-220 mrad CEP stability and sub-9 fs pulse duration at a center wavelength around 880 nm. Broadband, background-free, passively CEP stabilized seed pulses are produced in a series of cascaded optical parametric amplifiers pumped by the Yb:KGW laser, while a diode-pumped Nd:YAG laser system provides multi-mJ pump pulses for power amplification stages. Excellent stability of output parameters over 16 hours of continuous operation is demonstrated.
Development and characterization of a laser-plasma soft X-ray source for contact microscopy
In this work, we present a compact laser-produced plasma source of X-rays, developed and characterized for application in soft X-ray contact microscopy (SXCM). The source is based on a double stream gas puff target, irradiated with a commercially available Nd:YAG laser, delivering pulses with energy up to 740 mJ and 4 ns pulse duration at 10 Hz repetition rate. The target is formed by pulsed injection of a stream of high-Z gas (argon) into a cloud of low Z-gas (helium) by using an electromagnetic valve with a double nozzle setup. The source is designed to irradiate specimens, both in vacuum and in helium atmosphere with nanosecond pulses of soft X-rays in the ‘‘water-window” spectral range. The source is capable of delivering a photon fluence of about 1.09 x 103 photon/µm2/pulse at a sample placed in vacuum at a distance of about 20 mm downstream the source. It can also deliver a photon fluence of about 9.31 x 102 - photons/µm2/pulse at a sample placed in a helium atmosphere at the same position. The source design and results of the characterization measurements as well as the optimization of the source are presented and discussed. The source was successfully applied in the preliminary experiments on soft X-ray contact microscopy and images of microstructures and biological specimens with ~80 nm half-pitch spatial resolution, obtained in helium atmosphere, are presented.
The ELI-ALPS facility: the next generation of attosecond sources
This review presents the technological infrastructure that will be available at the Extreme Light Infrastructure Attosecond Light Pulse Source (ELI-ALPS) international facility. ELI-ALPS will offer to the international scientific community ultrashort pulses in the femtosecond and attosecond domain for time-resolved investigations with unprecedented levels of high quality characteristics. The laser sources and the attosecond beamlines available at the facility will make attosecond technology accessible for scientists lacking access to these novel tools. Time-resolved investigation of systems of increasing complexity is envisaged using the end stations that will be provided at the facility.
XUV generation from the interaction of pico- and nanosecond laser pulses with nanostructured targets
Laser-produced plasmas are intense sources of XUV radiation that can be suitable for different applications such as extreme ultraviolet lithography, beyond extreme ultraviolet lithography and water window imaging. In particular, much work has focused on the use of tin plasmas for extreme ultraviolet lithography at 13.5 nm. We have investigated the spectral behavior of the laser produced plasmas formed on closely packed polystyrene microspheres and porous alumina targets covered by a thin tin layer in the spectral region from 2.5 to 16 nm. Nd:YAG lasers delivering pulses of 170 ps (Ekspla SL312P )and 7 ns (Continuum Surelite) duration were focused onto the nanostructured targets coated with tin. The intensity dependence of the recorded spectra was studied; the conversion efficiency (CE) of laser energy into the emission in the 13.5 nm spectral region was estimated. We have observed an increase in CE using high intensity 170 ps Nd:YAG laser pulses as compared with a 7 ns pulse.
EUV spectra from highly charged terbium ions in optically thin and thick plasmas
We have observed extreme ultraviolet (EUV) spectra from terbium (Tb) ions in optically thin and thick plasmas for a comparative study. The experimental spectra are recorded in optically thin, magnetically confined torus plasmas and dense laser-produced plasmas (LPPs). The main feature of the spectra is quasicontinuum emission with a peak around 6.5-6.6 nm, the bandwidth of which is narrower in the torus plasmas than in the LPPs. A comparison between the two types of spectra also suggests strong opacity effects in the LPPs. A comparison with the calculated line strength distributions gives a qualitative interpretation of the observed spectra.