Fixed wavelength lasers

Short pulse duration, wide range of customization options and high stability are distinctive features of EKSPLA fixed wavelength lasers. Product range includes femtosecond, picosecond and nanosecond lasers for R&D applications.

Fixed wavelength lasers
Summary

Manifesting 30 years of experience

Employing latest achievements in laser technologies, team of dedicated engineers designed wide range of products tailored for specific applications: from compact, simple and robust DPSS NL200 series lasers for OEM manufacturers to high energy customized flash-lamp or diode pumped multijoule systems for research laboratories.

Due to their excellent stability and high output parameters EKSPLA scientific picosecond lasers established their name as “Gold Standard” among scientific picosecond lasers.

Second, third, fourth and fifth (on some versions) harmonic options combined with various accessories, advanced electronics (for streak camera synchronization, phase-locked loop, synchronization of fs laser) and customization possibilities make these lasers well suited for many scientific applications, including optical parametric generator OPCPA, Ti:Sapphire and dye laser pumping, time-resolved spectroscopy, nonlinear spectroscopy, remote sensing, metrology, plasma research…

For customer convenience the laser can be operated from master device or personal computer through USB (VCP, ASCII commands), RS232 (ASCII commands), LAN (REST API) or RS232 (ASCII commands), LAN (REST API) depending on the system configuration or from remote control pad with backlit display that is easy to read even while wearing laser safety glasses.

Lasers comparison table

ModelMax pulse energy 1)Repetition rate, up toPumpingPulse durationSpecial feature
Picosecond lasers
5 mJ
at 1064 nm
1 000 HzDiode pumped
solid state
29 ± 5 pskHz repetition rate
40 mJ
at 1064 nm
100 HzDiode pumped
solid state
29 ± 5 psHigh pulse energy employing DPSS only technology
100 mJ20 HzHybrid (DPSS master oscillator and flash-lamp pumped power amplifier)29 ± 5 psHigh pulse energy
80 W
at 1064 nm
1 MHzDiode pumped
solid state
10 ± 3 psHigh power industrial grade
Nanosecond lasers
4 mJ
at 1064 nm
10 – 2500 HzDiode pumped solid state<10 nsCompact and robust
190 mJ
at 1064 nm
100 HzDiode pumped solid state3 – 6 nsDiode pumped only
1100 mJ
at 1064 nm
20 HzFlash-lamp pumped3 – 6 nsVersatile, compact nanosecond laser
ModelMax pulse energy 1)Repetition rate, up toPumpingPulse durationSpecial feature
  1. At fundamental wavelength.

Fiber seeders comparison table

ModelCentral wavelengthPulse durationOutput powerPulse energyRepetition rate
Femtosecond fiber seeders
1030 nmUp to 30 ps
(linearly chirped or custom chirp profile), compressible down to < 200 fs
50 mW1 nJ25 kHz – 50 MHz
1030 nm> 50 ps (custom chirp profile), compressible down to < 250 fs200 mW250 nJ100 kHz – 50 MHz
1064 nm<140 fs200 mW5 nJ25 kHz – 50 MHz
Picosecond fiber seeders
1064 nm
tunable ±0.2 nm
7±1 ps80 mW1.6 nJ25 kHz – 50 MHz
1064 nm
tunable ±0.2 nm
10±1 ps200 mW50 nJ25 kHz – 50 MHz
ModelCentral wavelengthPulse durationOutput powerPulse energyRepetition rate

Picosecond Laser Systems

Nanosecond Laser Systems

Fiber Seeders

Publications

Ultrafast transient absorption spectra and kinetics of human blue cone visual pigment at room temperature

A. Krishnamoorthi, D. Salom, A. Wu, K. Palczewski, and P. M. Rentzepis, Proceedings of the National Academy of Sciences 121 (41), e2414037121 (2024). DOI: 10.1073/pnas.2414037121.

Compact, low-cost, and broadband terahertz time-domain spectrometer

N. Couture, J. Schlosser, A. Ahmed, M. Wahbeh, G. Best, A. Gamouras et al., Appl. Opt. 62 (15), 4097-4101 (2023). DOI: 10.1364/AO.486938.

Laser-generated nanoparticles from Fe-based metallic glass in water and its amorphization control by pulsed laser processing

S. Liang, M. E. R. Reusmann, K. Loza, S. Zerebecki, L. Zhang, Z. Jia et al., Materials Today Chemistry 30, 101544 (2023). DOI: 10.1016/j.mtchem.2023.101544.

Effects of pressure and substrate temperature on the growth of Al-doped ZnO films by pulsed laser deposition

R. Kek, K. Tan, C. H. Nee, S. L. Yap, S. F. Koh, A. K. B. H. M. Arof et al., Materials Research Express 7 (1), 016414 (2020). DOI: 10.1088/2053-1591/ab62f8.

Near infrared-triggered liposome cages for rapid, localized small molecule delivery

J. E. Shin, M. O. Ogunyankin, and J. A. Zasadzinski, Scientific reports 10 (1), 1706 (2020). DOI: 10.1038/s41598-020-58764-3.

Structure Determination of Hen Egg-White Lysozyme Aggregates Adsorbed to Lipid/Water and Air/Water Interfaces

S. Strazdaite, E. Navakauskas, J. Kirschner, T. Sneideris, and G. Niaura, Langmuir 36 (17), 4766-4775 (2020). DOI: 10.1021/acs.langmuir.9b03826.

Thermal control of SZ2080 photopolymerization in four-beam interference lithography

Z. Prielaidas, S. Juodkazis, and E. Stankevičius, Physical Chemistry Chemical Physics 22 (9), 5038-5045 (2020). DOI: 10.1039/C9CP05168F.

A primary radiation standard based on quantum nonlinear optics

S. Lemieux, E. Giese, R. Fickler, M. V. Chekhova, and R. W. Boyd, Nature Physics 15 (6), 529-532 (2019). DOI: 10.1038/s41567-019-0447-2.

Aggregation states of poly (4-methylpentene-1) at a solid interface

K. Yamamoto, D. Kawaguchi, K. Sasahara, M. Inutsuka, S. Yamamoto, K. Uchida et al., Polymer Journal 51 (2), 247-255 (2019). DOI: 10.1038/s41428-018-0134-7.

Engineering electrochemical sensors using nanosecond laser treatment of thin gold film on ITO glass

E. Stankevičius, M. Garliauskas, L. Laurinavičius, R. Trusovas, N. Tarasenko, and R. Pauliukaitė, Electrochimica Acta 297, 511-522 (2019). DOI: 10.1016/j.electacta.2018.11.197.

1

2 3 4 5

...

9

Content not found