Publication database
Infrared Multiple Photon Dissociation Spectroscopy of Hydrated Cobalt Anions Doped with Carbon Dioxide CoCO2(H2O)n−, n=1–10, in the C−O Stretch Region
We investigate anionic [Co,CO2,nH2O]− clusters as model systems for the electrochemical activation of CO2 by infrared multiple photon dissociation (IRMPD) spectroscopy in the range of 1250–2234 cm−1 using an FT-ICR mass spectrometer. We show that both CO2 and H2O are activated in a significant fraction of the [Co,CO2,H2O]− clusters since it dissociates by CO loss, and the IR spectrum exhibits the characteristic C−O stretching frequency. About 25 % of the ion population can be dissociated by pumping the C−O stretching mode. With the help of quantum chemical calculations, we assign the structure of this ion as Co(CO)(OH)2−. However, calculations find Co(HCOO)(OH)− as the global minimum, which is stable against IRMPD under the conditions of our experiment. Weak features around 1590–1730 cm−1 are most likely due to higher lying isomers of the composition Co(HOCO)(OH)−. Upon additional hydration, all species [Co,CO2,nH2O]−, n≥2, undergo IRMPD through loss of H2O molecules as a relatively weakly bound messenger. The main spectral features are the C−O stretching mode of the CO ligand around 1900 cm−1, the water bending mode mixed with the antisymmetric C−O stretching mode of the HCOO− ligand around 1580–1730 cm−1, and the symmetric C−O stretching mode of the HCOO− ligand around 1300 cm−1. A weak feature above 2000 cm−1 is assigned to water combination bands. The spectral assignment clearly indicates the presence of at least two distinct isomers for n ≥2.
Black phosphorene as a hole extraction layer boosting solar water splitting of oxygen evolution catalysts
As the development of oxygen evolution co-catalysts (OECs) is being actively undertaken, the tailored integration of those OECs with photoanodes is expected to be a plausible avenue for achieving highly efficient solar-assisted water splitting. Here, we demonstrate that a black phosphorene (BP) layer, inserted between the OEC and BiVO4 can improve the photoelectrochemical performance of pre-optimized OEC/BiVO4 (OEC: NiOOH, MnOx, and CoOOH) systems by 1.2∼1.6-fold, while the OEC overlayer, in turn, can suppress BP self-oxidation to achieve a high durability. A photocurrent density of 4.48 mA·cm−2 at 1.23 V vs reversible hydrogen electrode (RHE) is achieved by the NiOOH/BP/BiVO4 photoanode. It is found that the intrinsic p-type BP can boost hole extraction from BiVO4 and prolong holes trapping lifetime on BiVO4 surface. This work sheds light on the design of BP-based devices for application in solar to fuel conversion, and also suggests a promising nexus between semiconductor and electrocatalyst.
Considerable matrix shift in the electronic transitions of helium-solvated cesium dimer cation Cs2He+n
We investigate the photodissociation of helium-solvated cesium dimer cations using action spectroscopy and quantum chemical calculations. The spectrum of Cs2He+ shows three distinct absorption bands into both bound and dissociative states. Upon solvation with further helium atoms, considerable shifts of the absorption bands are observed, exceeding 0.1 eV (850 cm−1) already for Cs2He10+, along with significant broadening. The shifts are highly sensitive to the character of the excited state. Our calculations show that helium atoms adsorb on the ends of Cs2+. The shifts are particularly pronounced if the excited state orbitals extend to the area occupied by the helium atoms. In this case, Pauli repulsion leads to a deformation of the excited state orbitals, resulting in the observed blue shift of the transition. Since the position of the weakly bound helium atoms is ill defined, Pauli repulsion also explains the broadening.
High-performance all-organic DFB and DBR waveguide laser with various grating height fabricated by a two-photon absorption DLW method
Organic solid-state lasers (OSSLs) with distributed feedback (DFB) structures or distributed Bragg reflectors (DBRs) are promising for potential application in bio-sensing and hazardous materials detection. Here, the laser performances of the all-organic DFB waveguide lasers with various grating heights ranging from 0.4 to 4.7 μm were investigated. The grating structures used as the lasing cavity were fabricated using a two-photon absorption (TPA) direct laser writing (DLW) method with an SU-8 negative photoresist. The laser active layer consisted of a rhodamine 6G (R6G) laser dye and a cellulose acetate (CA) matrix. The R6G/CA solution was spin-coated onto the quartz substrate with the cavity (grating) structures to fabricate the DFB waveguide laser devices. The diffraction order of lasing ranged from m = 4 to 7. As the grating height was increased to 1.9 μm, the slope efficiency increased for all diffraction orders and the threshold decreases for each diffraction order. The dependence of the cavity (grating) length on the laser performances was investigated. The slope efficiency increased as the cavity length increased to 300 μm. The effect of the cavity (grating) position on the slope efficiency and the threshold position of the cavity (grating) was also studied. A maximum slope efficiency of 10.2% was achieved for the DFB waveguide laser device with a cavity (grating) length of 300 μm, a cavity position at 6 mm from the emission edge of the waveguide, and an aspect ratio ≈3 between the grating height of 1.74 μm and the grating width of 0.6 μm for the diffraction order m = 6 for lasing.
Iminothioindoxyl as a molecular photoswitch with 100 nm band separation in the visible range
Light is an exceptional external stimulus for establishing precise control over the properties and functions of chemical and biological systems, which is enabled through the use of molecular photoswitches. Ideal photoswitches are operated with visible light only, show large separation of absorption bands and are functional in various solvents including water, posing an unmet challenge. Here we show a class of fully-visible-light-operated molecular photoswitches, Iminothioindoxyls (ITIs) that meet these requirements. ITIs show a band separation of over 100 nm, isomerize on picosecond time scale and thermally relax on millisecond time scale. Using a combination of advanced spectroscopic and computational techniques, we provide the rationale for the switching behavior of ITIs and the influence of structural modifications and environment, including aqueous solution, on their photochemical properties. This research paves the way for the development of improved photo-controlled systems for a wide variety of applications that require fast responsive functions.
Impact of molecular quadrupole moments on the energy levels at organic heterojunctions
The functionality of organic semiconductor devices crucially depends on molecular energies, namely the ionisation energy and the electron affinity. Ionisation energy and electron affinity values of thin films are, however, sensitive to film morphology and composition, making their prediction challenging. In a combined experimental and simulation study on zinc-phthalocyanine and its fluorinated derivatives, we show that changes in ionisation energy as a function of molecular orientation in neat films or mixing ratio in blends are proportional to the molecular quadrupole component along the π-π-stacking direction. We apply these findings to organic solar cells and demonstrate how the electrostatic interactions can be tuned to optimise the energy of the charge-transfer state at the donor−acceptor interface and the dissociation barrier for free charge carrier generation. The confirmation of the correlation between interfacial energies and quadrupole moments for other materials indicates its relevance for small molecules and polymers.
Infrared Spectroscopy of Size-Selected Hydrated Carbon Dioxide Radical Anions CO2.−(H2O)n (n=2–61) in the C−O Stretch Region
Understanding the intrinsic properties of the hydrated carbon dioxide radical anions CO2.−(H2O)n is relevant for electrochemical carbon dioxide functionalization. CO2.−(H2O)n (n=2–61) is investigated by using infrared action spectroscopy in the 1150–2220 cm−1 region in an ICR (ion cyclotron resonance) cell cooled to T=80 K. The spectra show an absorption band around 1280 cm−1, which is assigned to the symmetric C−O stretching vibration νs. It blueshifts with increasing cluster size, reaching the bulk value, within the experimental linewidth, for n=20. The antisymmetric C−O vibration νas is strongly coupled with the water bending mode ν2, causing a broad feature at approximately 1650 cm−1. For larger clusters, an additional broad and weak band appears above 1900 cm−1 similar to bulk water, which is assigned to a combination band of water bending and libration modes. Quantum chemical calculations provide insight into the interaction of CO2.− with the hydrogen-bonding network.
Probing the Structural Evolution of the Hydrated Electron in Water Cluster Anions (H2O)n–, n ≤ 200, by Electronic Absorption Spectroscopy
Electronic absorption spectra of water cluster anions (H2O)n–, n ≤ 200, at T = 80 K are obtained by photodissociation spectroscopy and compared with simulations from literature and experimental data for bulk hydrated electrons. Two almost isoenergetic electron binding motifs are seen for cluster sizes 20 ≤ n ≤ 40, which are assigned to surface and partially embedded isomers. With increasing cluster size, the surface isomer becomes less populated, and for n ≥ 50, the partially embedded isomer prevails. The absorption shifts to the blue, reaching a plateau at n ≈ 100. In this size range, the absorption spectrum is similar to that of the bulk hydrated electron but is slightly red-shifted; spectral moment analysis indicates that these clusters are reasonable model systems for hydrated electrons near the liquid–vacuum interface.
Pulsed photo-ionization spectroscopy of traps in as-grown and neutron irradiated ammonothermally synthesized GaN
GaN-based structures are promising for production of radiation detectors and high-voltage high-frequency devices. Particle detectors made of GaN are beneficial as devices simultaneously generating of the optical and electrical signals. Photon-electron coupling cross-section is a parameter which relates radiation absorption and emission characteristics. On the other hand, photon-electron coupling cross-section together with photo-ionization energy are fingerprints of deep centres in material. In this work, the wafer fragments of the GaN grown by ammonothermal (AT) technology are studied to reveal the dominant defects introduced by growth procedures and reactor neutron irradiations in a wide range, 1012–1016 cm−2, of fluences. Several defects in the as-grown and irradiated material have been revealed by using the pulsed photo-ionization spectroscopy (PPIS) technique. The PPIS measurements were performed by combining femtosecond (40 fs) and nanosecond (4 ns) laser pulses emitted by optical parametric oscillators (OPO) to clarify the role of electron-phonon coupling. Variations of the operational characteristics of the tentative sensors, made of the AT GaN doped with Mg and Mn, under radiation damage by reactor neutrons have been considered.
11% efficiency solid-state dye-sensitized solar cells with copper (II/I) hole transport materials
Solid-state dye-sensitized solar cells currently suffer from issues such as inadequate nanopore filling, low conductivity and crystallization of hole-transport materials infiltrated in the mesoscopic TiO2 scaffolds, leading to low performances. Here we report a record 11% stable solid-state dye-sensitized solar cell under standard air mass 1.5 global using a hole-transport material composed of a blend of [Cu (4,4′,6,6′-tetramethyl-2,2′-bipyridine)2](bis(trifluoromethylsulfonyl)imide)2 and [Cu (4,4′,6,6′-tetramethyl-2,2′-bipyridine)2](bis(trifluoromethylsulfonyl)imide). The amorphous Cu(II/I) conductors that conduct holes by rapid hopping infiltrated in a 6.5 μm-thick mesoscopic TiO2 scaffold are crucial for achieving such high efficiency. Using time-resolved laser photolysis, we determine the time constants for electron injection from the photoexcited sensitizers Y123 into the TiO2 and regeneration of the Y123 by Cu(I) to be 25 ps and 3.2 μs, respectively. Our work will foster the development of low-cost solid-state photovoltaic based on transition metal complexes as hole conductors.