PhotoSonus M

High Energy, Mobile, Tunable Wavelength Laser Source for Photoacoustic Imaging

Following the demand for high output energies in the photoacoustic market for imaging larger volumes of tissue, PhotoSonus M, an updated high energy tunable laser source for photo-acoustic imaging, was introduced.

Download datasheet
PhotoSonus M
Overview
  • High up to 250 mJ output energy
  • Wide tuning range from 330 to 2300 nm
  • Ultra-wide OPO signal tuning range from 660 to 1320 nm
  • 10 Hz or 20 Hz pulse repetition rate
  • Integrated pump laser, OPO and PSU in single mobile unit
  • Low maintenance cost
  • Fiber bundle connectors with safety interlock
  • Fast wavelength switching within entire signal or idler range between two consecutive pulses
  • Integrated energy meter (optional)
  • Motorized attenuator (optional)
  • Access to pump laser wavelengths 1064/532 nm (optional)
Photoacoustic image of the upper torso and brain of a female mouse.

Photoacoustic image of the upper torso and brain of a female mouse.

Courtesy of PhotoSound Technologies, Inc.

Photoacoustic image of a mouse.

Photoacoustic image of a mouse.

Courtesy of PhotoSound Technologies, Inc.

Description

Following the demand for high output energies in the photoacoustic market for imaging larger volumes of tissue, PhotoSonus M, an updated high energy tunable laser source for photo-acoustic imaging, was introduced.

Time-tested Ekspla nanosecond pump laser, parametric oscillator, power supply and cooling unit are integrated in a single robust housing to provide mobility, ease of use and low maintenance cost. The highly flexible PhotoSonus M platform makes it easily integrated and used in a photoacoustic imaging system. It is fully motorized and computer controlled, with user trigger outputs and inputs and special options such as motorized switching between OPO signal and idler, motorized attenuator, internal energy meter and electromechanical output shutter.

Recently, a fast wavelength switching option was introduced that enables each laser pulse to have a different wavelength within the entire signal or idler range and at any sequence. This new feature, combining high pulse energy (up to 180 mJ) and wide wavelength tuning range (330 – 2300 nm) makes PhotoSonus M the irreplaceable imaging source for any photo acoustic system.

For even higher sample imaging depth and resolution a PhotoSonus M+, with up to 250 mJ maximum pulse energy, was introduced.

For convenience, the outputs of PhotoSonus M and PhotoSonus M+ lasers can be coupled with almost any type of fiber bundle.

Specifications

ModelPhotoSonus M-10PhotoSonus M-20PhotoSonus M+
OPO 1)
Wavelength range
Signal660 – 1320 nm660 – 1320 nm660 – 1064 nm 2)
SH extension range (optional)330 – 659 nm330 – 659 nm330 – 530 nm
(330 – 659 nm 3) )
Idler (optional)1065 – 2300 nm1065 – 2300 nm1065 – 2300 nm
OPO output MAX pulse energy 4)> 180 mJ> 160 mJ> 250 mJ
Pulse repetition rate10 Hz20 Hz10 Hz
Scanning step
Signal0.1 nm0.1 nm0.1 nm
Idler1 nm1 nm1 nm
Pulse duration 5)3 – 5 ns3 – 5 ns3 – 5 ns
Signal linewidth 6)< 10 cm‑1< 10 cm‑1< 10 cm‑1
Typical signal beam diameter (1/e2) 7)7 ± 2 mm7 ± 2 mm9 ± 2 mm
Physical characteristics
Unit size (W × L × H mm)434 × 672 × 887 mm434 × 672 × 887 mm434 × 672 × 887 mm
Operating requirements
Room temperature18 – 27 °C18 – 27 °C18 – 27 °C
Relative humidity20 – 80 %
(non-condensing)
20 – 80 %
(non-condensing)
20 – 80 %
(non-condensing)
Power requirements 8)208 or 240 VAC,
single phase, 50/60 Hz
208 or 240 VAC,
single phase, 50/60 Hz
208 or 240 VAC,
single phase, 50/60 Hz
Power consumption< 1.0 kVA< 1.5 kVA< 1.5 kVA
ModelPhotoSonus M-10PhotoSonus M-20PhotoSonus M+
  1. Due to continuous improvement, all specifications are subject to change without notice. The parameters marked typical are not specifications. They are indications of typical performance and will vary with each unit we manufacture. Unless stated otherwise all specifications are measured at 700 nm.
  2. Optional signal extended range: 660 – 1320 nm.
  3. When extended signal range is selected.
  4. Measured at the free space output. See tuning curves for typical energy levels at different wavelengths.
  5. FWHM measured with photodiode featuring 1 ns rise time and 300 MHz bandwidth oscilloscope.
  6. At 700 nm or higher wavelengths.
  7. Measured at the free space output at 700 nm. Can be adjusted as per request.
  8. Mains voltage should be specified when ordering.

Note: Laser must be connected to the mains electricity all the time. If there will be no mains electricity for longer that 1 hour then laser (system) needs warm up for a few hours before switching on.

Ordering information of PhotoSonus M laser sources.

Ordering information of PhotoSonus M laser sources.

Publications

An Investigation of Signal Preprocessing for Photoacoustic Tomography

I. Huen, R. Zhang, R. Bi, X. Li, M. Moothanchery, and M. Olivo, Sensors 23 (1), 510 (2023). DOI: 10.3390/s23010510.

Bimetallic Hyaluronate-Modified Au@Pt Nanoparticles for Noninvasive Photoacoustic Imaging and Photothermal Therapy of Skin Cancer

H. H. Han, S. Kim, J. Kim, W. Park, C. Kim, H. Kim et al., ACS Applied Materials & Interfaces 15 (9), 11609-11620 (2023). DOI: 10.1021/acsami.3c01858.

Characterizing a photoacoustic and fluorescence imaging platform for preclinical murine longitudinal studies

W. R. Thompson, H. F. Brecht, V. Ivanov, A. M. Yu, D. S. Dumani, D. J. Lawrence et al., Journal of Biomedical Optics 28 (3), 036001 (2023). DOI: 10.1117/1.JBO.28.3.036001.

Deep Learning Enhances Multiparametric Dynamic Volumetric Photoacoustic Computed Tomography In Vivo (DL-PACT)

S. Choi, J. Yang, S. Y. Lee, J. Kim, J. Lee, W. J. Kim et al., Advanced Science 10 (1), 2202089 (2023). DOI: 10.1002/advs.202202089.

Fast photoacoustic imaging technology for deep structure information of finger

T. Meng, H. Li, and Y. Liu, in Ninth Symposium on Novel Photoelectronic Detection Technology and Applications, J. Chu, W. Liu, and H. Xu, eds. (SPIE, 2023), pp. 126176E. DOI: 10.1117/12.2666706.

Fully three-dimensional sound speed-corrected multi-wavelength photoacoustic breast tomography

M. Dantuma, F. Lucka, S. C. Kruitwagen, A. Javaherian, L. Alink, R. P. P. van Meerdervoort et al., https://arxiv.org/abs/2308.06754. DOI: 10.48550/arXiv.2308.06754.

LED-based Schlieren system for full-field photoacoustic wave acquisition and image reconstruction

Y. Ojeda‑Morales, D. Hernandez‑Lopez, and G. Martínez‑Ponce, Opt. Continuum 2 (9), 2007-2016 (2023). DOI: 10.1364/OPTCON.498143.

Microfluidic Fabrication of Highly Efficient Hydrogel Optical Fibers for In Vivo Fiber-Optic Applications

G. Fitria, M. Kwon, H. Lee, A. Singh, K. Yoo, Y. Go et al., Advanced Optical Materials 11 (18), 2300453 (2023). DOI: 10.1002/adom.202300453.

Photoacoustic tomography with a model-based approach involving realistic detector properties

P. Warbal, and R. K. Saha, Results in Optics 13, 100528 (2023). DOI: 10.1016/j.rio.2023.100528.

Size-tunable ICG-based contrast agent platform for targeted near-infrared photoacoustic imaging.

S. Singh, G. Giammanco, C. Hu, J. Bush, L. S. Cordova, D. J. Lawrence et al., Photoacoustics 29, 100437 (2023). DOI: 10.1016/j.pacs.2022.100437.

1

2 3 4

Content not found