Publication database
A primary radiation standard based on quantum nonlinear optics
The black body remains the most prominent source of light for absolute radiometry. Its main alternative, synchrotron radiation, requires costly and large facilities. Quantum optics offers a new radiometric source: parametric down-conversion (PDC), a nonlinear optical process, in which pairwise photon correlations enable absolute calibration of photodetectors. Since the emission rate crucially depends on the brightness of the electromagnetic field, quantum-mechanical fluctuations of the vacuum can be seen as a seed of spontaneous PDC, and their amplitude is a natural radiometric standard. Thus, they allow for the calibration of the spectral radiance of light sources by measuring the ratio between seeded and unseeded PDC. Here, we directly use the frequency spectrum of the electromagnetic vacuum to trigger spontaneous PDC and employ the generated light to infer the spectral response of a spectrometer over a broad spectral range. Then, we deduce the absolute quantum efficiency from the spectral shape of PDC in the high-gain regime, without relying on a seed or reference detector. Our results compare well with the ones obtained with a reference lamp, demonstrating a promising primary radiation standard.
Degradation of blue-phosphorescent organic light-emitting devices involves exciton-induced generation of polaron pair within emitting layers
Degradation of organic materials is responsible for the short operation lifetimes of organic light-emitting devices, but the mechanism by which such degradation is initiated has yet to be fully established. Here we report a new mechanism for degradation of emitting layers in blue-phosphorescent devices. We investigate binary mixtures of a wide bandgap host and a series of novel Ir(III) complex dopants having N-heterocyclocarbenic ligands. Our mechanistic study reveals the charge-neutral generation of polaron pairs (radical ion pairs) by electron transfer from the dopant to host excitons. Annihilation of the radical ion pair occurs by charge recombination, with such annihilation competing with bond scission. Device lifetime correlates linearly with the rate constant for the annihilation of the radical ion pair. Our findings demonstrate the importance of controlling exciton-induced electron transfer, and provide novel strategies to design materials for long-lifetime blue electrophosphorescence devices.
Mid-infrared, super-flat, supercontinuum generation covering the 2–5 μm spectral band using a fluoroindate fibre pumped with picosecond pulses
Broadband, mid-infrared supercontinuum generation in a step-index fluoroindate fibre is reported. By using ~70-picosecond laser pulses at 2.02 μm, provided by an optical parametric generator, a wide spectrum with a cut-off wavelength at 5.25 μm and a 5-dB bandwidth covering the entire 2–5 μm spectral interval has been demonstrated for the first time. The behaviour of the supercontinuum was investigated by changing the peak power and the wavelength of the pump pulses. This allowed the optimal pumping conditions to be determined for the nonlinear medium that was used. The optical damage threshold for the fluoroindate fibre was experimentally found to be ~200 GW/cm2.
On-chip visible-to-infrared supercontinuum generation with more than 495 THz spectral bandwidth
We report ultra-broadband supercontinuum generation in high-confinement Si3N4 integrated optical waveguides. The spectrum extends through the visible (from 470 nm) to the infrared spectral range (2130 nm) comprising a spectral bandwidth wider than 495 THz, which is the widest supercontinuum spectrum generated on a chip.
Luminescence upconversion in colloidal double quantum dots
Luminescence upconversion nanocrystals capable of converting two low-energy photons into a single photon at a higher energy are sought-after for a variety of applications, including bioimaging and photovoltaic light harvesting. Currently available systems, based on rare-earth-doped dielectrics, are limited in both tunability and absorption cross-section. Here we present colloidal double quantum dots as an alternative nanocrystalline upconversion system, combining the stability of an inorganic crystalline structure with the spectral tunability afforded by quantum confinement. By tailoring its composition and morphology, we form a semiconducting nanostructure in which excited electrons are delocalized over the entire structure, but a double potential well is formed for holes. Upconversion occurs by excitation of an electron in the lower energy transition, followed by intraband absorption of the hole, allowing it to cross the barrier to a higher energy state. An overall conversion efficiency of 0.1% per double excitation event is achieved.