Femtosecond laser systems

Femtosecond lasers
Industrial

Industrial femtosecond lasers

ModelRepetition ratePulse durationMax pulse energySpecial feature
2 MHz350 fs – 1 ps300 µJ
4 MHz400 fs – 1 ps1 mJ
10 MHz300 fs – 5 ps3 µJ
ModelRepetition ratePulse durationMax pulse energySpecial feature

Downloads

Publications

Comparative analysis of microlens array formation in fused silica glass by laser: Femtosecond versus picosecond pulses

L. Zubauskas, E. Markauskas, A. Vyšniauskas, V. Stankevič, and P. Gečys, Journal of Science: Advanced Materials and Devices 9 (4), 100804 (2024). DOI: 10.1016/j.jsamd.2024.100804.

The ultrafast burst laser ablation of metals: Speed and quality come together

A. Žemaitis, U. Gudauskytė, S. Steponavičiūtė, P. Gečys, and M. Gedvilas, Optics & Laser Technology 180, 111458 (2024). DOI: 10.1016/j.optlastec.2024.111458.

Ultrashort Pulse Bursts for Surface Laser Polishing

S. Steponavičiūtė, P. Gečys, G. Račiukaitis, M. Gedvilas, and A. Žemaitis, in Optics, Photonics and Lasers OPAL’ 2024 Conference Proceedings, S. Y. Yurish, ed. (IFSA Publishing, 2024), pp. 44.

Acoustic resonance effects and cavitation in SAW aerosol generation

M. Roudini, J. Manuel Rosselló, O. Manor, C. Ohl, and A. Winkler, Ultrasonics Sonochemistry 98, 106530 (2023). DOI: 10.1016/j.ultsonch.2023.106530.

Characterization of pathological stomach tissue using polarization-sensitive second harmonic generation microscopy

H. Jeon, M. Harvey, R. Cisek, E. Bennett, and D. Tokarz, Biomed. Opt. Express 14 (10), 5376-5391 (2023). DOI: 10.1364/BOE.500335.

Clean production and characterization of nanobubbles using laser energy deposition

J. M. Rosselló, and C. Ohl, Ultrasonics Sonochemistry 94, 106321 (2023). DOI: 10.1016/j.ultsonch.2023.106321.

Femtosecond Laser Cutting of 110–550 µm Thickness Borosilicate Glass in Ambient Air and Water

E. Markauskas, L. Zubauskas, G. Račiukaitis, and P. Gečys, Micromachines 14 (1) (2023). DOI: 10.3390/mi14010176.

GaAs ablation with ultrashort laser pulses in ambient air and water environments

E. Markauskas, L. Zubauskas, A. Naujokaitis, B. Čechavičius, M. Talaikis, G. Niaura et al., Journal of Applied Physics 133 (23), 235102 (2023). DOI: 10.1063/5.0152173.

High numerical aperture imaging allows chirality measurement in individual collagen fibrils using polarization second harmonic generation microscopy

M. Harvey, R. Cisek, M. Alizadeh, V. Barzda, L. Kreplak, and D. Tokarz, Nanophotonics 12 (11), 2061-2071 (2023). DOI: doi:10.1515/nanoph-2023-0177.

High throughput wide field second harmonic imaging of giant unilamellar vesicles

M. Eremchev, D. Roesel, P. M. Dansette, A. Michailovas, and S. Roke, Biointerphases 18 (3), 031202 (2023). DOI: 10.1116/6.0002640.

1

2 3 4 5

High intensity femtosecond laser systems

ModelRepetition ratePulse durationMax pulse energySpecial feature
1 kHzdown to 10 fs20 mJHigh repetition rate tunable wavelength fs OPCPA Systems
100 Hzdown to 10 fs1 JHigh energy fs OPCPA systems
1 kHzdown to 8 fs1 JCustom multi TW few cycle OPCPA systems
ModelRepetition ratePulse durationMax pulse energySpecial feature

Downloads

Publications

High-Repetition-Rate Attosecond Extreme Ultraviolet Beamlines at ELI ALPS for Studying Ultrafast Phenomena

M. Shirozhan, S. Mondal, T. Grósz, B. Nagyillés, B. Farkas, A. Nayak et al., Ultrafast Science 4, 0067 (2024). DOI: 10.34133/ultrafastscience.0067.

53 W average power CEP-stabilized OPCPA system delivering 5.5 TW few cycle pulses at 1 kHz repetition rate

R. Budriūnas, T. Stanislauskas, J. Adamonis, A. Aleknavičius, G. Veitas, D. Gadonas et al., Opt. Express 25 (5), 5797-5806 (2017). DOI: 10.1364/OE.25.005797.

The ELI-ALPS facility: the next generation of attosecond sources

S. Kühn, M. Dumergue, S. Kahaly, S. Mondal, M. Füle, T. Csizmadia et al., Journal of Physics B: Atomic, Molecular and Optical Physics 50 (13), 132002 (2017). DOI: 10.1088/1361-6455/aa6ee8.

Table top TW-class OPCPA system driven by tandem femtosecond Yb:KGW and picosecond Nd:YAG lasers

T. Stanislauskas, R. Budriūnas, R. Antipenkov, A. Zaukevičius, J. Adamonis, A. Michailovas et al., Opt. Express 22 (2), 1865-1870 (2014). DOI: 10.1364/OE.22.001865.

Femtosecond fiber seeders

ModelRepetition ratePulse durationMax pulse energySpecial feature
25 kHz – 50 MHzUp to 30 ps,
compressible down to < 200 fs
1 nJ
100 kHz – 50 MHz> 50 ps,
compressible down to < 250 fs
250 nJ
25 kHz – 50 MHz<140 fs5 nJ
ModelRepetition ratePulse durationMax pulse energySpecial feature

Downloads

Publications

Compact, low-cost, and broadband terahertz time-domain spectrometer

N. Couture, J. Schlosser, A. Ahmed, M. Wahbeh, G. Best, A. Gamouras et al., Appl. Opt. 62 (15), 4097-4101 (2023). DOI: 10.1364/AO.486938.

Terahertz Spectroscopy for Gastrointestinal Cancer Diagnosis

F. Wahaia, I. Kašalynas, G. Valušis, C. D. C. Silva, and P. L. Granja, in Terahertz Spectroscopy, J. Uddin, ed. (IntechOpen, 2017). DOI: 10.5772/66999.

On-chip visible-to-infrared supercontinuum generation with more than 495 THz spectral bandwidth

J. P. Epping, T. Hellwig, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman et al., Opt. Express 23 (15), 19596-19604 (2015). DOI: 10.1364/OE.23.019596.

Content not found