Publication database
Thermal control of SZ2080 photopolymerization in four-beam interference lithography
Photopolymerization by four-beam interference lithography on a preheated SZ2080 sample was explored at different initial temperatures of the sample: 20 °C, 50 °C, 75 °C, 100 °C, 125 °C, and 150 °C, and at exposure times ranging from 0.5 s to 5 s. The average laser power selected was ∼100 mW for the 300 ps duration pulses at a 1 kHz repetition rate. The experimental results demonstrate that the higher initial temperature of the sample positively influences the crosslinking of the patterns. These findings will improve polymerization protocols for multi-beam interference lithography.
Mechanism of pillars formation using four-beam interference lithography
Three different experiments were performed in order to determine the mechanism of pillars formation using four-beam interference lithography. The experimental results demonstrate that pillars, fabricated in argon gas, were wider and higher compared with the pillars fabricated in nitrogen gas, low vacuum or air. It clearly indicates that the pillar bottom widening effect is not affected by the depletion of atmospheric oxygen as in all environments the fabricated pillars have a wider bottom part. Moreover, the shape of the fabricated pillars is not affecting by the back reflection from the positioning stage and by the light irradiation conditions. These results clearly indicate that the photopolymerization process is enhanced by the heat current and it determines the pillar bottom widening effect.