Publication database
Bulk material influence on the aggressiveness of cavitation – Questioning the microjet impact influence and suggesting a possible way to erosion mitigation
In a study conducted over 10 years ago (Petkovsek and Dular, 2013) [1] we noticed that the thin metal sheet sustains less cavitation damage when it is attached to an acrylic glass (PMMA) than in the case when we attached it to quartz glass (SiO2). The reason for this was not explored at the time.
In the present paper we present a systematic study of single cavitation bubble erosion of a thin aluminum foil, which was attached to either PMMA or SiO2 plate. We show that the damage sustained on the foil attached to PMMA plate is significantly smaller regardless of the bubble collapse distance from the boundary. The result is surprising since one would expect the weak foil to be severely damaged regardless of the material it is attached to.
By femtosecond illumination and high-speed image acquisition we were able to capture the formation and progression of the shock waves, which are emitted at cavitation bubble collapse and observed that they are reflected on SiO2 boundary but that they traverse the PMMA bulk material. We offer an explanation that to achieve less damage the bulk material needs to have acoustic impedance similar to the one of the liquid medium in which cavitation occurs.
Further on, we constructed a simple composite material where PMMA was attached to the SiO2 and showed that we can partially mitigate the damage. This was further confirmed by ultrasonic cavitation erosion tests.
The results also imply that the cavitation damage originates solely from the shock wave, which is emitted at cavitation bubble collapse – consequently putting the idea of microjet impact mechanism under question. Finally, the study offers a new exciting approach to mitigate cavitation erosion by fine tuning the acoustic impedance of the coatings.
Characterization of pathological stomach tissue using polarization-sensitive second harmonic generation microscopy
Alterations in collagen ultrastructure between human gastric adenocarcinoma and normal gastric tissue were investigated using polarization-resolved second harmonic generation (PSHG) microscopy. Cylindrical and trigonal symmetries were assumed to extract quantitative PSHG parameters, ρ, κ and S, from each image pixel. Statistically significant variations in these values were observed for gastric adenocarcinoma, indicating a higher disorder of collagen. Numerical focal volume simulations of crossing fibrils indicate increased S parameter is due to more intersecting collagen fibrils of varying diameters. These parameters were also able to distinguish between different grades of gastric adenocarcinoma indicating that PSHG may be useful for automated cancer diagnosis.
Characterizing a photoacoustic and fluorescence imaging platform for preclinical murine longitudinal studies
Significance. To effectively study preclinical animal models, medical imaging technology must be developed with a high enough resolution and sensitivity to perform anatomical, functional, and molecular assessments. Photoacoustic (PA) tomography provides high resolution and specificity, and fluorescence (FL) molecular tomography provides high sensitivity; the combination of these imaging modes will enable a wide range of research applications to be studied in small animals.
Aim. We introduce and characterize a dual-modality PA and FL imaging platform using in vivo and phantom experiments.
Approach. The imaging platform’s detection limits were characterized through phantom studies that determined the PA spatial resolution, PA sensitivity, optical spatial resolution, and FL sensitivity.
Results. The system characterization yielded a PA spatial resolution of 173 ± 17 μm in the transverse plane and 640 ± 120 μm in the longitudinal axis, a PA sensitivity detection limit not less than that of a sample with absorption coefficient μa = 0.258 cm − 1, an optical spatial resolution of 70 μm in the vertical axis and 112 μm in the horizontal axis, and a FL sensitivity detection limit not <0.9 μM concentration of IR-800. The scanned animals displayed in three-dimensional renders showed high-resolution anatomical detail of organs.
Conclusions. The combined PA and FL imaging system has been characterized and has demonstrated its ability to image mice in vivo, proving its suitability for biomedical imaging research applications.
Clean production and characterization of nanobubbles using laser energy deposition
We have demonstrated the production of laser bulk nanobubbles (BNB) with ambient radii typically below 500 nm. The gaseous nature of the nanometric objects was confirmed by a focused acoustic pulse that expands the gas cavities to a size that can be visualized with optical microscopy. The BNBs were produced on demand by a collimated high-energy laser pulse in a “clean” way, meaning that no solid particles or drops were introduced in the sample by the generation method. This is a clear advantage relative to the other standard BNB production techniques. Accordingly, the role of nanometric particles in laser bubble production is discussed. The characteristics of the nanobubbles were evaluated with two alternative methods. The first one measures the response of the BNBs to acoustic pulses of increasing amplitude to estimate their rest radius through the calculation of the dynamics Blake threshold. The second one is based on the bubble dissolution dynamics and the correlation of the bubble’s lifetime with its initial size. The high reproducibility of the present system in combination with automated data acquisition and analysis constitutes a sound tool for studying the effects of the liquid and gas properties on the stability of the BNBs solution.
Compact, low-cost, and broadband terahertz time-domain spectrometer
Terahertz time-domain spectroscopy (THz-TDS) is a powerful technique that enables the characterization of a large range of bulk materials, devices, and products. Although this technique has been increasingly used in research and industry, the standard THz-TDS configuration relying on the use of a near-infrared (NIR) laser source remains experimentally complex and relatively costly, impeding its availability to those without the expertise to build a high-performance setup based on nonlinear optics or without the financial means to acquire a commercial unit. Broadband THz-TDS systems require an even larger financial investment, primarily because the generation and detection of spectral components exceeding 3 THz typically need an ultrafast NIR source delivering sub-100-fs pulses. Such an ultrafast source can be bulky and cost upwards of $100,000. Here, we present a broadband, compact, and portable THz-TDS system comprising three modules that allow for the implementation of a single low-cost ultrafast laser, hence significantly decreasing the overall cost of the system. In the first module, the output laser pulses are spectrally broadened through nonlinear propagation in a polarization-maintaining optical fiber and then temporally compressed to achieve a higher peak power. The other two modules utilize thick nonlinear crystals with periodically patterned surfaces that diffract NIR pulses and optimize the efficiency of THz generation and detection processes by enabling a noncollinear beam geometry. Phase-matching conditions in the nonlinear crystals are controlled by the period of the gratings to gain access to a large spectral THz bandwidth. The whole system, combining these three modules, provides access to a THz spectrum peaking at 3.5 THz and extending beyond 6 THz with a maximum dynamic range of 50 dB for time-resolved spectroscopy applications. We demonstrate the functionality of this configuration by performing THz spectroscopy measurements of water vapor contained within a closed cell. Our compact system design paves the way towards a high-performance, yet cost-effective, THz-TDS system that can be readily used in academia and industry.
Compressed single-shot 3D photoacoustic imaging with a single-element transducer
Three-dimensional (3D) photoacoustic imaging (PAI) can provide rich information content and has gained increasingly more attention in various biomedical applications. However, current 3D PAI methods either involves pointwise scanning of the 3D volume using a single-element transducer, which can be time-consuming, or requires an array of transducers, which is known to be complex and expensive. By utilizing a 3D encoder and compressed sensing techniques, we develop a new imaging modality that is capable of single-shot 3D PAI using a single-element transducer. The proposed method is validated with phantom study, which demonstrates single-shot 3D imaging of different objects and 3D tracking of a moving object. After one-time calibration, while the system could perform single-shot 3D imaging for different objects, the calibration could remain effective over 7 days, which is highly beneficial for practical translation. Overall, the experimental results showcase the potential of this technique for both scientific research and clinical applications.
Deep Learning Enhances Multiparametric Dynamic Volumetric Photoacoustic Computed Tomography In Vivo (DL-PACT)
Abstract Photoacoustic computed tomography (PACT) has become a premier preclinical and clinical imaging modality. Although PACT\'s image quality can be dramatically improved with a large number of ultrasound (US) transducer elements and associated multiplexed data acquisition systems, the associated high system cost and/or slow temporal resolution are significant problems. Here, a deep learning-based approach is demonstrated that qualitatively and quantitively diminishes the limited-view artifacts that reduce image quality and improves the slow temporal resolution. This deep learning-enhanced multiparametric dynamic volumetric PACT approach, called DL-PACT, requires only a clustered subset of many US transducer elements on the conventional multiparametric PACT. Using DL-PACT, high-quality static structural and dynamic contrast-enhanced whole-body images as well as dynamic functional brain images of live animals and humans are successfully acquired, all in a relatively fast and cost-effective manner. It is believed that the strategy can significantly advance the use of PACT technology for preclinical and clinical applications such as neurology, cardiology, pharmacology, endocrinology, and oncology.
Deep learning on photoacoustic tomography to remove image distortion due to inaccurate measurement of the scanning radius
Photoacoustic tomography (PAT) is a non-invasive, non-ionizing hybrid imaging modality that holds great potential for various biomedical applications and the incorporation with deep learning (DL) methods has experienced notable advancements in recent times. In a typical 2D PAT setup, a single-element ultrasound detector (USD) is used to collect the PA signals by making a 360° full scan of the imaging region. The traditional backprojection (BP) algorithm has been widely used to reconstruct the PAT images from the acquired signals. Accurate determination of the scanning radius (SR) is required for proper image reconstruction. Even a slight deviation from its nominal value can lead to image distortion compromising the quality of the reconstruction. To address this challenge, two approaches have been developed and examined herein. The first framework includes a modified version of dense U-Net (DUNet) architecture. The second procedure involves a DL-based convolutional neural network (CNN) for image classification followed by a DUNet. The first protocol was trained with heterogeneous simulated images generated from three different phantoms to learn the relationship between the reconstructed and the corresponding ground truth (GT) images. In the case of the second scheme, the first stage was trained with the same heterogeneous dataset to classify the image type and the second stage was trained individually with the appropriate images. The performance of these architectures has been tested on both simulated and experimental images. The first method can sustain SR deviation up to approximately 6% for simulated images and 5% for experimental images and can accurately reproduce the GTs. The proposed DL-approach extends the limits further (approximately 7% and 8% for simulated and experimental images, respectively). Our results suggest that classification-based DL method does not need a precise assessment of SR for accurate PAT image formation.
Effect of out of plane orientation on polarization second harmonic generation of single collagen fibrils
Second harmonic generation (SHG) microscopy has emerged as a powerful technique for visualizing collagen organization within tissues. Amongst the many advantages of SHG is its sensitivity to collagen nanoscale organization, and its presumed sensitivity to the relative out of plane polarity of fibrils. Recent results have shown that circular dichroism SHG (CD-SHG), a technique that has been commonly assumed to reveal the relative out of plane polarity of collagen fibrils, is actually insensitive to changes in fibril polarity. However, results from another research group seem to contradict this conclusion. Both previous results have been based on SHG imaging of collagen fibrils within tissues, therefore, to gain a definitive understanding of the sensitivity of SHG to relative out of plane polarity, the results from individual fibrils are desirable. Here we present polarization resolved SHG microscopy (PSHG) data from individual collagen fibrils oriented out of the image plane by buckling on an elastic substrate. We show through correlation with atomic force microscopy measurements that SHG intensity can be used to estimate the out of plane angle of individual fibrils. We then compare the sensitivity of two PSHG techniques, CD-SHG and polarization-in, polarization-out SHG (PIPO-SHG), to the relative out of plane polarity of individual fibrils. We find that for single fibrils CD-SHG is insensitive to relative out of polarity and we also demonstrate the first direct experimental confirmation that PIPO-SHG reveals the relative out of plane polarity of individual collagen fibrils.
Fast photoacoustic imaging technology for deep structure information of finger
In this paper, we exploited the fast-imaging technology for the deep structure of finger based on photoacoustic imaging, which adopted the self-designed 128-ring-array fast photoacoustic imaging system to acquire the latent inside information of finger. The home-made photoacoustic imaging system has the merits of fast imaging, high resolution and deep imaging depth. Specifically, our system could obtain a cross section scan of finger within 0.05 or 0.1s, achieve the resolution of approach 180 μm and image the latent inside information of finger as well as extend the imaging depth over 5 cm in chicken breast tissue at the laser density of 20 mJ/cm2 (≤ANSI safety limit). In this work, we obtained the finger anatomical information of skin tissue, blood vessel tissue, and the information of tendon tissue and phalanx tissue which is relatively difficult to obtain by means of photoacoustic imaging. So, we will be able to restore an overall internal structure of a finger including its external shape its internal tendon structure and its internal phalanx structure or containing its blood vessel structure. And that more information from different angles can make its identification more accurate. It is prospective that the deep structure of finger we get by our fast photoacoustic imaging technology will help to provide more possibilities for finger identification and lead to more credible technology for human about relevant information collection and resolution.