Publication database
Characterization of pathological stomach tissue using polarization-sensitive second harmonic generation microscopy
Alterations in collagen ultrastructure between human gastric adenocarcinoma and normal gastric tissue were investigated using polarization-resolved second harmonic generation (PSHG) microscopy. Cylindrical and trigonal symmetries were assumed to extract quantitative PSHG parameters, ρ, κ and S, from each image pixel. Statistically significant variations in these values were observed for gastric adenocarcinoma, indicating a higher disorder of collagen. Numerical focal volume simulations of crossing fibrils indicate increased S parameter is due to more intersecting collagen fibrils of varying diameters. These parameters were also able to distinguish between different grades of gastric adenocarcinoma indicating that PSHG may be useful for automated cancer diagnosis.
Characterizing a photoacoustic and fluorescence imaging platform for preclinical murine longitudinal studies
Significance. To effectively study preclinical animal models, medical imaging technology must be developed with a high enough resolution and sensitivity to perform anatomical, functional, and molecular assessments. Photoacoustic (PA) tomography provides high resolution and specificity, and fluorescence (FL) molecular tomography provides high sensitivity; the combination of these imaging modes will enable a wide range of research applications to be studied in small animals.
Aim. We introduce and characterize a dual-modality PA and FL imaging platform using in vivo and phantom experiments.
Approach. The imaging platform’s detection limits were characterized through phantom studies that determined the PA spatial resolution, PA sensitivity, optical spatial resolution, and FL sensitivity.
Results. The system characterization yielded a PA spatial resolution of 173 ± 17 μm in the transverse plane and 640 ± 120 μm in the longitudinal axis, a PA sensitivity detection limit not less than that of a sample with absorption coefficient μa = 0.258 cm − 1, an optical spatial resolution of 70 μm in the vertical axis and 112 μm in the horizontal axis, and a FL sensitivity detection limit not <0.9 μM concentration of IR-800. The scanned animals displayed in three-dimensional renders showed high-resolution anatomical detail of organs.
Conclusions. The combined PA and FL imaging system has been characterized and has demonstrated its ability to image mice in vivo, proving its suitability for biomedical imaging research applications.
Clean production and characterization of nanobubbles using laser energy deposition
We have demonstrated the production of laser bulk nanobubbles (BNB) with ambient radii typically below 500 nm. The gaseous nature of the nanometric objects was confirmed by a focused acoustic pulse that expands the gas cavities to a size that can be visualized with optical microscopy. The BNBs were produced on demand by a collimated high-energy laser pulse in a “clean” way, meaning that no solid particles or drops were introduced in the sample by the generation method. This is a clear advantage relative to the other standard BNB production techniques. Accordingly, the role of nanometric particles in laser bubble production is discussed. The characteristics of the nanobubbles were evaluated with two alternative methods. The first one measures the response of the BNBs to acoustic pulses of increasing amplitude to estimate their rest radius through the calculation of the dynamics Blake threshold. The second one is based on the bubble dissolution dynamics and the correlation of the bubble’s lifetime with its initial size. The high reproducibility of the present system in combination with automated data acquisition and analysis constitutes a sound tool for studying the effects of the liquid and gas properties on the stability of the BNBs solution.
Compact, low-cost, and broadband terahertz time-domain spectrometer
Terahertz time-domain spectroscopy (THz-TDS) is a powerful technique that enables the characterization of a large range of bulk materials, devices, and products. Although this technique has been increasingly used in research and industry, the standard THz-TDS configuration relying on the use of a near-infrared (NIR) laser source remains experimentally complex and relatively costly, impeding its availability to those without the expertise to build a high-performance setup based on nonlinear optics or without the financial means to acquire a commercial unit. Broadband THz-TDS systems require an even larger financial investment, primarily because the generation and detection of spectral components exceeding 3 THz typically need an ultrafast NIR source delivering sub-100-fs pulses. Such an ultrafast source can be bulky and cost upwards of $100,000. Here, we present a broadband, compact, and portable THz-TDS system comprising three modules that allow for the implementation of a single low-cost ultrafast laser, hence significantly decreasing the overall cost of the system. In the first module, the output laser pulses are spectrally broadened through nonlinear propagation in a polarization-maintaining optical fiber and then temporally compressed to achieve a higher peak power. The other two modules utilize thick nonlinear crystals with periodically patterned surfaces that diffract NIR pulses and optimize the efficiency of THz generation and detection processes by enabling a noncollinear beam geometry. Phase-matching conditions in the nonlinear crystals are controlled by the period of the gratings to gain access to a large spectral THz bandwidth. The whole system, combining these three modules, provides access to a THz spectrum peaking at 3.5 THz and extending beyond 6 THz with a maximum dynamic range of 50 dB for time-resolved spectroscopy applications. We demonstrate the functionality of this configuration by performing THz spectroscopy measurements of water vapor contained within a closed cell. Our compact system design paves the way towards a high-performance, yet cost-effective, THz-TDS system that can be readily used in academia and industry.
Deep Learning Enhances Multiparametric Dynamic Volumetric Photoacoustic Computed Tomography In Vivo (DL-PACT)
Abstract Photoacoustic computed tomography (PACT) has become a premier preclinical and clinical imaging modality. Although PACT\'s image quality can be dramatically improved with a large number of ultrasound (US) transducer elements and associated multiplexed data acquisition systems, the associated high system cost and/or slow temporal resolution are significant problems. Here, a deep learning-based approach is demonstrated that qualitatively and quantitively diminishes the limited-view artifacts that reduce image quality and improves the slow temporal resolution. This deep learning-enhanced multiparametric dynamic volumetric PACT approach, called DL-PACT, requires only a clustered subset of many US transducer elements on the conventional multiparametric PACT. Using DL-PACT, high-quality static structural and dynamic contrast-enhanced whole-body images as well as dynamic functional brain images of live animals and humans are successfully acquired, all in a relatively fast and cost-effective manner. It is believed that the strategy can significantly advance the use of PACT technology for preclinical and clinical applications such as neurology, cardiology, pharmacology, endocrinology, and oncology.
Fast photoacoustic imaging technology for deep structure information of finger
In this paper, we exploited the fast-imaging technology for the deep structure of finger based on photoacoustic imaging, which adopted the self-designed 128-ring-array fast photoacoustic imaging system to acquire the latent inside information of finger. The home-made photoacoustic imaging system has the merits of fast imaging, high resolution and deep imaging depth. Specifically, our system could obtain a cross section scan of finger within 0.05 or 0.1s, achieve the resolution of approach 180 μm and image the latent inside information of finger as well as extend the imaging depth over 5 cm in chicken breast tissue at the laser density of 20 mJ/cm2 (≤ANSI safety limit). In this work, we obtained the finger anatomical information of skin tissue, blood vessel tissue, and the information of tendon tissue and phalanx tissue which is relatively difficult to obtain by means of photoacoustic imaging. So, we will be able to restore an overall internal structure of a finger including its external shape its internal tendon structure and its internal phalanx structure or containing its blood vessel structure. And that more information from different angles can make its identification more accurate. It is prospective that the deep structure of finger we get by our fast photoacoustic imaging technology will help to provide more possibilities for finger identification and lead to more credible technology for human about relevant information collection and resolution.
Femtosecond Laser Cutting of 110–550 µm Thickness Borosilicate Glass in Ambient Air and Water
The cutting quality and strength of strips cut with femtosecond-duration pulses were investigated for different thicknesses of borosilicate glass plates. The laser pulse duration was 350 fs, and cutting was performed in two environments: ambient air and water. When cutting in water, a thin flowing layer of water was formed at the front surface of the glass plate by spraying water mist next to a laser ablation zone. The energy of pulses greatly exceeded the critical self-focusing threshold in water, creating conditions favorable for laser beam filament formation. Laser cutting parameters were individually optimized for different glass thicknesses (110–550 µm). The results revealed that laser cutting of borosilicate glass in water is favorable for thicker glass (300–550 µm) thanks to higher cutting quality, higher effective cutting speed, and characteristic strength. On the other hand, cutting ultrathin glass plates (110 µm thickness) demonstrated almost identical performance and cutting quality results in both environments. In this paper, we studied cut-edge defect widths, cut-sidewall roughness, cutting throughput, characteristic strength, and band-like damage formed at the back surface of laser-cut glass strips.
Fully three-dimensional sound speed-corrected multi-wavelength photoacoustic breast tomography
Photoacoustic tomography is a contrast agent-free imaging technique capable of visualizing blood vessels and tumor-associated vascularization in breast tissue. While sophisticated breast imaging systems have been recently developed, there is yet much to be gained in imaging depth, image quality and tissue characterization capability before clinical translation is possible. In response, we have developed a hybrid photoacoustic and ultrasound-transmission tomographic system PAM3. The photoacoustic component has for the first time three-dimensional multi-wavelength imaging capability, and implements substantial technical advancements in critical hardware and software sub-systems. The ultrasound component enables for the first time, a three-dimensional sound speed map of the breast to be incorporated in photoacoustic reconstruction to correct for inhomogeneities, enabling accurate target recovery. The results demonstrate the deepest photoacoustic breast imaging to date namely 48 mm, with a more uniform field of view than hitherto, and an isotropic spatial resolution that rivals that of Magnetic Resonance Imaging. The in vivo performance achieved, and the diagnostic value of interrogating angiogenesis-driven optical contrast as well as tumor mass sound speed contrast, gives confidence in the system's clinical potential.
GaAs ablation with ultrashort laser pulses in ambient air and water environments
Water-assisted ultrashort laser pulse processing of semiconductor materials is a promising technique to diminish heat accumulation and improve process quality. In this study, we investigate femtosecond laser ablation of deep trenches in GaAs, an important optoelectronic material, using water and ambient air environments at different laser processing regimes. We perform a comprehensive analysis of ablated trenches, including surface morphological analysis, atomic-resolution transmission electron microscopy imaging, elemental mapping, photoluminescence, and Raman spectroscopy. The findings demonstrate that GaAs ablation efficiency is enhanced in a water environment while heat-accumulation-related damage is reduced. Raman spectroscopy reveals a decrease in the broad feature associated with amorphous GaAs surface layers during water-assisted laser processing, suggesting that a higher material quality in deep trenches can be achieved using a water environment.
High numerical aperture imaging allows chirality measurement in individual collagen fibrils using polarization second harmonic generation microscopy
Second harmonic generation (SHG) microscopy is a commonly used technique to study the organization of collagen within tissues. However, individual collagen fibrils, which have diameters much smaller than the resolution of most optical systems, have not been extensively investigated. Here we probe the structure of individual collagen fibrils using polarization-resolved SHG (PSHG) microscopy and atomic force microscopy. We find that longitudinally polarized light occurring at the edge of a focal volume of a high numerical aperture microscope objective illuminated with linearly polarized light creates a measurable variation in PSHG signal along the axis orthogonal to an individual collagen fibril. By comparing numerical simulations to experimental data, we are able to estimate parameters related to the structure and chirality of the collagen fibril without tilting the sample out of the image plane, or cutting tissue at different angles, enabling chirality measurements on individual nanostructures to be performed in standard PSHG microscopes. The results presented here are expected to lead to a better understanding of PSHG results from both collagen fibrils and collagenous tissues. Further, the technique presented can be applied to other chiral nanoscale structures such as microtubules, nanowires, and nanoribbons.