Publication database
Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells
Perovskite solar cells with submicrometre-thick CH3NH3PbI3 or CH3NH3PbI3–xClx active layers show a power conversion efficiency as high as 15%. However, compared to the best-performing device, the average efficiency was as low as 12%, with a large standard deviation (s.d.). Here, we report perovskite solar cells with an average efficiency exceeding 16% and best efficiency of 17%. This was enabled by the growth of CH3NH3PbI3 cuboids with a controlled size via a two-step spin-coating procedure. Spin-coating of a solution of CH3NH3I with different concentrations follows the spin-coating of PbI2, and the cuboid size of CH3NH3PbI3 is found to strongly depend on the concentration of CH3NH3I. Light-harvesting efficiency and charge-carrier extraction are significantly affected by the cuboid size. Under simulated one-sun illumination, average efficiencies of 16.4% (s.d. ± 0.35), 16.3% (s.d. ± 0.44) and 13.5% (s.d. ± 0.34) are obtained from solutions of CH3NH3I with concentrations of 0.038 M, 0.050 M and 0.063 M, respectively. By controlling the size of the cuboids of CH3NH3PbI3 during their growth, we achieved the best efficiency of 17.01% with a photocurrent density of 21.64 mA cm–2, open-circuit photovoltage of 1.056 V and fill factor of 0.741.
Luminescence upconversion in colloidal double quantum dots
Luminescence upconversion nanocrystals capable of converting two low-energy photons into a single photon at a higher energy are sought-after for a variety of applications, including bioimaging and photovoltaic light harvesting. Currently available systems, based on rare-earth-doped dielectrics, are limited in both tunability and absorption cross-section. Here we present colloidal double quantum dots as an alternative nanocrystalline upconversion system, combining the stability of an inorganic crystalline structure with the spectral tunability afforded by quantum confinement. By tailoring its composition and morphology, we form a semiconducting nanostructure in which excited electrons are delocalized over the entire structure, but a double potential well is formed for holes. Upconversion occurs by excitation of an electron in the lower energy transition, followed by intraband absorption of the hole, allowing it to cross the barrier to a higher energy state. An overall conversion efficiency of 0.1% per double excitation event is achieved.
Photogeneration and reactions of benzhydryl cations and radicals: A complex sequence of mechanisms from femtoseconds to microseconds
Unified treatment and measurement of the spectral resolution and temporal effects in frequency-resolved sum-frequency generation vibrational spectroscopy (SFG-VS)
The lack of understanding of the temporal effects and the restricted ability to control experimental conditions in order to obtain intrinsic spectral lineshapes in surface sum-frequency generation vibrational spectroscopy (SFG-VS) have limited its applications in surface and interfacial studies. The emergence of high-resolution broadband sum-frequency generation vibrational spectroscopy (HR-BB-SFG-VS) with sub-wavenumber resolution [Velarde et al., J. Chem. Phys., 2011, 135, 241102] offers new opportunities for obtaining and understanding the spectral lineshapes and temporal effects in SFG-VS. Particularly, the high accuracy of the HR-BB-SFG-VS experimental lineshape provides detailed information on the complex coherent vibrational dynamics through direct spectral measurements. Here we present a unified formalism for the theoretical and experimental routes for obtaining an accurate lineshape of the SFG response. Then, we present a detailed analysis of a cholesterol monolayer at the air/water interface with higher and lower resolution SFG spectra along with their temporal response. With higher spectral resolution and accurate vibrational spectral lineshapes, it is shown that the parameters of the experimental SFG spectra can be used both to understand and to quantitatively reproduce the temporal effects in lower resolution SFG measurements. This perspective provides not only a unified picture but also a novel experimental approach to measuring and understanding the frequency-domain and time-domain SFG response of a complex molecular interface.
A cobalt complex redox shuttle for dye-sensitized solar cells with high open-circuit potentials
Dye-sensitized solar cells are a promising alternative to traditional inorganic semiconductor-based solar cells. Here we report an open-circuit voltage of over 1,000 mV in mesoscopic dye-sensitized solar cells incorporating a molecularly engineered cobalt complex as redox mediator. Cobalt complexes have negligible absorption in the visible region of the solar spectrum, and their redox properties can be tuned in a controlled fashion by selecting suitable donor/acceptor substituents on the ligand. This approach offers an attractive alternate to the traditional I3−/I− redox shuttle used in dye-sensitized solar cells. A cobalt complex using tridendate ligands [Co(bpy-pz)2]3+/2+(PF6)3/2 as redox mediator in combination with a cyclopentadithiophene-bridged donor-acceptor dye (Y123), adsorbed on TiO2, yielded a power conversion efficiency of over 10% at 100 mW cm−2. This result indicates that the molecularly engineered cobalt redox shuttle is a legitimate alternative to the commonly used I3−/I− redox shuttle.
The Pan-STARRS1 photometric system
The Pan-STARRS1 survey is collecting multi-epoch, multi-color observations of the sky north of declination −30° to unprecedented depths. These data are being photometrically and astrometrically calibrated and will serve as a reference for many other purposes. In this paper, we present our determination of the Pan-STARRS1 photometric system: gP1, rP1, iP1, zP1, yP1, and wP1. The Pan-STARRS1 photometric system is fundamentally based on the Hubble Space Telescope Calspec spectrophotometric observations, which in turn are fundamentally based on models of white dwarf atmospheres. We define the Pan-STARRS1 magnitude system and describe in detail our measurement of the system passbands, including both the instrumental sensitivity and atmospheric transmission functions. By-products, including transformations to other photometric systems, Galactic extinction, and stellar locus, are also provided. We close with a discussion of remaining systematic errors.
Communication: Spectroscopic phase and lineshapes in high-resolution broadband sum frequency vibrational spectroscopy: Resolving interfacial inhomogeneities of “identical” molecular groups
The ability to achieve sub-wavenumber resolution (0.6 cm−1) and a large signal-to-noise ratio in high-resolution broadband sum-frequency generation vibrational spectroscopy (HR-BB-SFG-VS) allows for the detailed SFG spectral lineshapes to be used in the unambiguous determination of fine spectral features. Changes in the structural spectroscopic phase in SFG-VS as a function of beam polarization and experimental geometry proved to be instrumental in the identification of an unexpected 2.78 ± 0.07 cm−1 spectral splitting for the two methyl groups at the vapor/dimethyl sulfoxide (DMSO, (CH3)2SO) liquid interface as well as in the determination of their orientational angles.
Novel synthesis of up-conversion phosphor based on rare-earth doped NaLaF<sub>4</sub>
In this work Er3+ doped NaLaF4 material has been synthesized Along with the description of the synthesis route, luminescence spectra and decay kinetics of both traditional and up-conversion luminescence of Er3+ will be presented for different Er3+ doping levels. It will be shown that the main mechanisms involved in the creation of the up-conversion luminescence in NaLaF4:Er3+ under excitation at about 975 nm are excited state absorption and energy transfer. Relative impact of either of the mechanisms in NaLaF4:Er3+ depends on both the concentration of Er3+ and on the excitation wavelength: the increase of either the concentration or the excitation wavelength leads to the prevalence of energy transfer mechanism over excited state absorption mechanism.
Spectral characterization of surfaces using laser multi-photon ionization
Multi-photon ionization (MPI) spectroscopy of solid surfaces under ambient conditions and in nitrogen has been established and exemplified for a variety of materials. This was accomplished using a dedicated experimental setup that monitors the photoelectron yield as a function of the laser wavelength. The MPI spectra resemble the absorption characteristics, however, possess more peaks and are more detailed. This demonstrated the possibility to apply MPI spectroscopy for fast analysis of solids. The dependence of the signals upon the laser flux implies that the ionization mechanism depends on the examined molecule and in many cases it is a two-step process, via a long-living intermediate energy state. The method provides quantification in the pmole range and allows for surface imaging.
A Novel Method for Direct Nondestructive Diagnosis of Caries Affected Tooth Surfaces by Laser Multiphoton Ionization
A new nondestructive analytical method for diagnosis of tooth caries is presented. The method is based on the Multiphoton Ionization (MPI) fast conductivity signals measured from tooth surfaces. The signals are acquired for a series of laser wavelengths, thus obtaining full MPI spectra. The results indicate a good correlation between the MPI results and the degree of severity of the caries, as diagnosed using traditional inspection. Moreover, the spectral information can be reduced (using least squares fitting) to a single parameter that provides an objective quantitative estimation of the caries severity. The MPI data can be obtained for tiny points on the dental surface and it is suggested that mapping is possible by scanning method.