Publication database
Laser-induced selective copper plating of polypropylene surface
Laser writing for selective plating of electro-conductive lines for electronics has several significant advantages, compared to conventional printed circuit board technology. Firstly, this method is faster and cheaper at the prototyping stage. Secondly, material consumption is reduced, because it works selectively. However, the biggest merit of this method is potentiality to produce moulded interconnect device, enabling to create electronics on complex 3D surfaces, thus saving space, materials and cost of production. There are two basic techniques of laser writing for selective plating on plastics: the laser-induced selective activation (LISA) and laser direct structuring (LDS). In the LISA method, pure plastics without any dopant (filler) can be used. In the LDS method, special fillers are mixed in the polymer matrix. These fillers are activated during laser writing process, and, in the next processing step, the laser modified area can be selectively plated with metals.
In this work, both methods of the laser writing for the selective plating of polymers were investigated and compared. For LDS approach, new material: polypropylene with carbon-based additives was tested using picosecond and nanosecond laser pulses. Different laser processing parameters (laser pulse energy, scanning speed, the number of scans, pulse durations, wavelength and overlapping of scanned lines) were applied in order to find out the optimal regime of activation. Areal selectivity tests showed a high plating resolution. The narrowest width of a copper-plated line was less than 23 μm. Finally, our material was applied to the prototype of the electronic circuit board on a 2D surface.
Picosecond laser modification of CIGS active layer
Cu-chalcopyrite based solar cells such as Cu(In,Ga)Se2 (CIGS) have been established as the most efficient thin-film technology in converting sunlight into electricity. Laser scribed monolithic interconnects are one of the key technologies which will play a significant role in future develop-ments of CIGS technology. Laser scribing is needed to maintain module efficiency by dividing large scale device to smaller cells interconnected in series. CIGS layer is a thermally sensitive material, and laser modification can induce local structural changes of the active layer and significantly modi-fy the electrical properties. Therefore, the laser modified region can act as series interconnect be-tween the adjacent cells. In this study, we investigated the laser modification of the CIGS active layer with picosecond laser. The EDS analysis revealed the increase of Cu/(In+Ga) ratio in laser treated areas while Raman measurements indicated changes in main CIGS peak and formation of the Cu-rich CuGaSe2 phase. Therefore, this resulted in significant electrical conductivity increase in laser-treated areas. Electrical testing of the laser performed P2 micro-welds showed scribe conduc-tivities up to 9.3 Ω·cm which are acceptable for the cell serial interconnection.
Solvent-surface interactions control the phase structure in laser-generated iron-gold core-shell nanoparticles
This work highlights a strategy for the one-step synthesis of FeAu nanoparticles by the pulsed laser ablation of alloy targets in the presence of different solvents. This method allows particle generation without the use of additional chemicals; hence, solvent-metal interactions could be studied without cross effects from organic surface ligands. A detailed analysis of generated particles via transmission electron microscopy in combination with EDX elemental mapping could conclusively verify that the nature of the used solvent governs the internal phase structure of the formed nanoparticles. In the presence of acetone or methyl methacrylate, a gold shell covering a non-oxidized iron core was formed, whereas in aqueous media, an Au core with an Fe3O4 shell was generated. This core-shell morphology was the predominant species found in >90% of the examined nanoparticles. These findings indicate that fundamental chemical interactions between the nanoparticle surface and the solvent significantly contribute to phase segregation and elemental distribution in FeAu nanoparticles. A consecutive analysis of resulting Fe@Au core-shell nanoparticles revealed outstanding oxidation resistance and fair magnetic and optical properties. In particular, the combination of these features with high stability magnetism and plasmonics may create new opportunities for this hybrid material in imaging applications.
Variation of P2 series interconnects electrical conductivity in the CIGS solar cells by picosecond laser-induced modification
Cu-chalcopyrite based solar cells, such as Cu(In,Ga)Se2 (generally called CIGS) have been established as the most efficient thin-film technology in converting sunlight into electricity. High efficiency, flexibility and small weight make this technology attractive for future developments. Large scale production of these devices requires innovative technological solutions including the laser scribed monolithic interconnects. Laser scribing is needed to maintain module efficiency by dividing large scale device to smaller cells interconnected in series. Serious challenges in laser scribing technology have to be solved, including the laser induced thermal modification of the CIGS absorber layer. CIGS layer is thermally sensitive material, and laser modification can induce local structural changes and phase transitions to the metallic state. That is undesirable for the P3 scribing since superior isolating properties are needed. However, this effect can be used for the P2 process – interconnection of the adjacent cells. In this study, we investigated the picosecond laser modification of the CIGS active layer to form the series interconnect. The P2 laser process was optimized relying on the scribe electrical resistivity measurements with the best value of 3.5 Ω·cm. The EDS analysis revealed the increase of Cu/(Ga + In) ratio in laser treated areas while Raman measurements indicated changes in main CIGS peak and the formation of the Cu-rich CuGaSe2 phase. Therefore, this resulted in a significant electrical conductivity increase in laser-treated areas which is acceptable for the cell serial interconnection.
Direct laser beam interference patterning technique for fast high aspect ratio surface structuring
New results on development of the Direct Laser Interference Patterning (DLIP) technique using the interference of several beams to directly ablate the material are presented. The method is capable of producing sub-wavelength features not limited by a beam spot size and is an effective method of forming two-dimensional periodic structures on relatively large area with just a single laser shot. Surface texturing speed of DLIP method and the direct laser writing was compared. Fabrication time reduction up to a few orders of magnitude using DLIP was evaluated. The sub-period scanning technique was applied for formation of the complex periodic structures. A new method of laser scanning for fabrication of periodic structures on large areas without any visible stitching signs between laser irradiation spots was tested.
Flexible periodical micro-and nano-structuring of a stainless steel surface using dual-wavelength double-pulse picosecond laser irradiation
The picosecond laser-induced ripple formation on the stainless steel surface upon irradiation with linearly-polarized single-pulse and dual-wavelength cross-polarized double-pulse trains in air was studied experimentally. The characteristic switching of the ripple period and orientation were observed depending on the inter-pulse delay in the dual-wavelength cross-polarized double-pulse train irradiation experiments.
In situ formation and photo patterning of emissive quantum dots in small organic molecules
Nanostructured composites of inorganic and organic materials are attracting extensive interest for electronic and optoelectronic device applications. Here we report a novel method for the fabrication and patterning of metal selenide nanoparticles in organic semiconductor films that is compatible with solution processable large area device manufacturing. Our approach is based upon the controlled in situ decomposition of a cadmium selenide precursor complex in a film of the electron transporting material 1,3,5-tris(N-phenyl-benzimidazol-2-yl)-benzene (TPBI) by thermal and optical methods. In particular, we show that the photoluminescence quantum yield (PLQY) of the thermally converted CdSe quantum dots (QDs) in the TPBI film is up to 15%. We also show that laser illumination can form the QDs from the precursor. This is an important result as it enables direct laser patterning (DLP) of the QDs. DLP was performed on these nanocomposites using a picosecond laser. Confocal microscopy shows the formation of emissive QDs after laser irradiation. The optical and structural properties of the QDs were also analysed by means of UV-Vis, PL spectroscopy and transmission electron microscopy (TEM). The results show that the QDs are well distributed across the film and their emission can be tuned over a wide range by varying the temperature or irradiated laser power on the blend films. Our findings provide a route to the low cost patterning of hybrid electroluminescent devices.
Irradiation of diamond-like carbon films by picosecond laser pulses
The picosecond laser irradiation of diamond-like carbon (DLC) film on the silicon wasinvestigated. The DLC films were irradiated by Nd:YVO4 laser with the infrared (1064 nm, fluency 1.02 J/cm2) and ultraviolet (355 nm, fluency 0.79 J/cm2) wavelengths with 1, 10, and 100 pulse numbers per spot. The energy dispersive X-ray spectroscopy and microRaman spectroscopy measurements indicated that the full ablation area of the DLC was narrower than laser beam radius of the 1064 nm wavelength with 10 and 100 pulses. The increase of the oxygen concentration was obtained near the ablation areas after irradiation with the first harmonic. The microRaman and SEM measurements demonstrated that the DLC film was fully ablated in the laser spot when the third harmonic was used. The formation of silicon carbide (SiC) in the center of the irradiated spot was found after 100 pulses.
Layered Seed-Growth of AgGe Football-like Microspheres via Precursor-Free Picosecond Laser Synthesis in Water
Hybrid particles are of great significance in terms of their adjustable optical, electronic, magnetic, thermal and mechanical properties. As a novel technique, laser ablation in liquids (LAL) is famous for its precursor-free, “clean” synthesis of hybrid particles with various materials. Till now, almost all the LAL-generated particles originate from the nucleation-growth mechanism. Seed-growth of particles similar to chemical methods seems difficult to be achieved by LAL. Here, we not only present novel patch-joint football-like AgGe microspheres with a diameter in the range of 1 ~ 7 μm achievable by laser ablation in distilled water but also find direct evidences of their layered seed growth mechanism. Many critical factors contribute to the formation of AgGe microspheres: fast laser-generated plasma process provide an excellent condition for generating large amount of Ge and Ag ions/atoms, their initial nucleation and galvanic replacement reaction, while cavitation bubble confinement plays an important role for the increase of AgGe nuclei and subsequent layered growth in water after bubble collapse. Driven by work function difference, Ge acts as nucleation agent for silver during alloy formation. This new seed-growth mechanism for LAL technique opens new opportunities to develop a large variety of novel hybrid materials with controllable properties.