Publication database
Aerobic photoreactivity of synthetic eumelanins and pheomelanins: generation of singlet oxygen and superoxide anion
In this work, we examined photoreactivity of synthetic eumelanins, formed by autooxidation of DOPA, or enzymatic oxidation of 5,6-dihydroxyindole-2-carboxylic acid and synthetic pheomelanins obtained by enzymatic oxidation of 5-S-cysteinyldopa or 1:1 mixture of DOPA and cysteine. Electron paramagnetic resonance oximetry and spin trapping were used to measure oxygen consumption and formation of superoxide anion induced by irradiation of melanin with blue light, and time-resolved near-infrared luminescence was employed to determine the photoformation of singlet oxygen between 300 and 600 nm. Both superoxide anion and singlet oxygen were photogenerated by the synthetic melanins albeit with different efficiency. At 450-nm, quantum yield of singlet oxygen was very low (~10−4) but it strongly increased in the UV region. The melanins quenched singlet oxygen efficiently, indicating that photogeneration and quenching of singlet oxygen may play an important role in aerobic photochemistry of melanin pigments and could contribute to their photodegradation and photoaging.
Detection of disease markers in human breath with laser absorption spectroscopy
Number of trace compounds (called biomarkers), which occur in human breath, provide an information about individual feature of the body, as well as on the state of its health. In this paper we present the results of experiments about detection of certain biomarkers using laser absorption spectroscopy methods of high sensitivity. For NO, OCS, C2H6, NH3, CH4, CO and CO(CH3)2 an analysis of the absorption spectra was performed. The influence of interferents contained in exhaled air was considered. Optimal wavelengths of the detection were found and the solutions of the sensors, as well as the obtained results were presented. For majority of the compounds mentioned above the detection limits applicable for medicine were achieved. The experiments showed that the selected optoelectronic techniques can be applied for screening devices providing early diseases detection.
Flexible non-volatile optical memory thin-film transistor device with over 256 distinct levels based on an organic bicomponent blend
Organic nanomaterials are attracting a great deal of interest for use in flexible electronic applications such as logic circuits, displays and solar cells. These technologies have already demonstrated good performances, but flexible organic memories are yet to deliver on all their promise in terms of volatility, operational voltage, write/erase speed, as well as the number of distinct attainable levels. Here, we report a multilevel non-volatile flexible optical memory thin-film transistor based on a blend of a reference polymer semiconductor, namely poly(3-hexylthiophene), and a photochromic diarylethene, switched with ultraviolet and green light irradiation. A three-terminal device featuring over 256 (8 bit storage) distinct current levels was fabricated, the memory states of which could be switched with 3 ns laser pulses. We also report robustness over 70 write–erase cycles and non-volatility exceeding 500 days. The device was implemented on a flexible polyethylene terephthalate substrate, validating the concept for integration into wearable electronics and smart nanodevices.
Investigation into the advantages of pure perovskite film without PbI₂ for high performance solar cell
In CH3NH3PbI3-based high efficiency perovskite solar cells (PSCs), tiny amount of PbI2 impurity was often found with the perovskite crystal. However, for two-step solution process-based perovskite films, most of findings have been based on the films having different morphologies between with and without PbI2. This was mainly due to the inferior morphology of pure perovskite film without PbI2, inevitably produced when the remaining PbI2 forced to be converted to perovskite, so advantages of pure perovskite photoactive layer without PbI2 impurity have been overlooked. In this work, we designed a printing-based two-step process, which could not only generate pure perovskite crystal without PbI2, but also provide uniform and full surface coverage perovskite film, of which nanoscale morphology was comparable to that prepared by conventional two-step solution process having residual PbI2. Our results showed that, in two-step solution process-based PSC, pure perovskite had better photon absorption and longer carrier lifetime, leading to superior photocurrent generation with higher power conversion efficiency. Furthermore, this process was further applicable to prepare mixed phase pure perovskite crystal without PbI2 impurity, and we showed that the additional merits such as extended absorption to longer wavelength, increased carrier lifetime and reduced carrier recombination could be secured.
Magneto-elasto-electroporation (MEEP): In-vitro visualization and numerical characteristics
A magnetically controlled elastically driven electroporation phenomenon, or magneto-elasto-electroporation (MEEP), is discovered while studying the interactions between core-shell magnetoelectric nanoparticles (CSMEN) and biological cells in the presence of an a.c. magnetic field. In this paper we report the effect of MEEP observed via a series of in-vitro experiments using core (CoFe2O4)-shell (BaTiO3) structured magnetoelectric nanoparticles and human epithelial cells (HEP2). The cell electroporation phenomenon and its correlation with the magnetic field modulated CSMEN are described in detail. The potential application of CSMEN in electroporation is confirmed by analyzing crystallographic phases, multiferroic properties of the fabricated CSMEN, influences of d.c. and a.c. magnetic fields on the CSMEN and cytotoxicity tests. The mathematical formalism to quantitatively describe the phenomena is also reported. The reported findings provide insights into the underlying MEEP mechanism and demonstrate the utility of CSMEN as an electric pulse-generating nano-probe in electroporation experiments with a potential application toward accurate and efficient targeted cell permeation.
Mid-infrared, super-flat, supercontinuum generation covering the 2–5 μm spectral band using a fluoroindate fibre pumped with picosecond pulses
Broadband, mid-infrared supercontinuum generation in a step-index fluoroindate fibre is reported. By using ~70-picosecond laser pulses at 2.02 μm, provided by an optical parametric generator, a wide spectrum with a cut-off wavelength at 5.25 μm and a 5-dB bandwidth covering the entire 2–5 μm spectral interval has been demonstrated for the first time. The behaviour of the supercontinuum was investigated by changing the peak power and the wavelength of the pump pulses. This allowed the optimal pumping conditions to be determined for the nonlinear medium that was used. The optical damage threshold for the fluoroindate fibre was experimentally found to be ~200 GW/cm2.
Nile blue shows its true colors in gas-phase absorption and luminescence ion spectroscopy
Nile blue is used extensively in biology as a histological stain and fluorescent probe. Its absorption and emission spectra are strongly solvent dependent, with variations larger than 100 nm. The molecule is charged due to an iminium group, and it is therefore an obvious target for gas-phase ion spectroscopy. Here we report the absorption and emission spectra of the mass-selected bare ions isolated in vacuo, and based on our results we revisit the interpretation of solution-phase spectra. An accelerator mass spectrometer was used for absorption spectroscopy where the absorption is represented by the yield of photofragment ions versus excitation wavelength (action spectroscopy). The luminescence experiments were done with a newly built ion trap setup equipped with an electrospray ion source, and some details on the mass selection technique will be given which have not been described before. In vacuo, the absorption and emission maxima are at 580 ± 10 nm and 628 ± 1 nm. These values are somewhat blue-shifted relative to those obtained in most solvents; however, they are much further to the red than those in some of the most non-polar solvents. Furthermore, the Stokes shift in the gas phase (1300 cm−1) is much smaller than that in these non-polar solvents but similar to that in polar ones. An explanation based on charge localization by solvent dipoles, or by counterions in some non-polar solvents, can fully account for these findings. Hence in the case of ions, it is nontrivial to establish intrinsic electronic transition energies from solvatochromic shifts alone.
Optical investigation of gold shell enhanced 25 nm diameter upconverted fluorescence emission
We enhance the efficiency of upconverting nanoparticles by investigating the plasmonic coupling of 25 nm diameter NaYF4:Yb, Er nanoparticles with a gold-shell coating, and study the physical mechanism of enhancement by single-particle, time-resolved spectroscopy. A three-fold overall increase in emission intensity, and five-fold increase of green emission for these plasmonically enhanced particles have been achieved. Using a combination of structural and fluorescent imaging, we demonstrate that fluorescence enhancement is based on the photonic properties of single, isolated particles. Time-resolved spectroscopy shows that the increase in fluorescence is coincident with decreased rise time, which we attribute to an enhanced absorption of infrared light and energy transfer from Yb3+ to Er3+ atoms. Time-resolved spectroscopy also shows that fluorescence life-times are decreased to different extents for red and green emission. This indicates that the rate of photon emission is not suppressed, as would be expected for a metallic cavity, but rather enhanced because the metal shell acts as an optical antenna, with differing efficiency at different wavelengths.
Optoacoustic effect is responsible for laser-induced cochlear responses
Optical stimulation of the cochlea with laser light has been suggested as an alternative to conventional treatment of sensorineural hearing loss with cochlear implants. The underlying mechanisms are controversially discussed: The stimulation can either be based on a direct excitation of neurons, or it is a result of an optoacoustic pressure wave acting on the basilar membrane. Animal studies comparing the intra-cochlear optical stimulation of hearing and deafened guinea pigs have indicated that the stimulation requires intact hair cells. Therefore, optoacoustic stimulation seems to be the underlying mechanism. The present study investigates optoacoustic characteristics using pulsed laser stimulation for in vivo experiments on hearing guinea pigs and pressure measurements in water. As a result, in vivo as well as pressure measurements showed corresponding signal shapes. The amplitude of the signal for both measurements depended on the absorption coefficient and on the maximum of the first time-derivative of laser pulse power (velocity of heat deposition). In conclusion, the pressure measurements directly demonstrated that laser light generates acoustic waves, with amplitudes suitable for stimulating the (partially) intact cochlea. These findings corroborate optoacoustic as the basic mechanism of optical intra-cochlear stimulation.
Recent Advances in Laser Utilization in the Chemical Modification of Graphene Oxide and Its Applications
A dramatic rise in research interest in laser-induced graphene oxide (GO) reduction and modification requires an overview of the most recent works on this subject. Typical methods for the recognition and confirmation of modified graphene and its derivatives, such as Raman, Fourier-transform infra-red (FTIR), X-ray photoelectron (XP), and ultraviolet-visible (UV–vis) spectroscopies, are introduced briefly in this review. A major part of the survey is devoted to the main modification ways and the laser parameters used in the literature. A discussion of possible reduction and modification mechanisms is also presented. Recent applications, especially in the biomedical field such as cell therapy treatment, as well as significant results of GO modification, are discussed in detail. Finally, perspectives for the application of laser-induced GO modifications in passive THz photonics and biomedicine are briefly addressed.