Publication database
Cavitation Inception from Transverse Waves in a Thin Liquid Gap
It is well known that dielectric breakdown in a liquid generates cavitation bubbles and shock waves. Here we demonstrate that when the liquid is bounded by two solid glass boundaries (10–20-μm separation), rings of microscopic bubbles can be nucleated around the laser-induced cavitation bubble. While generally acoustic nucleation is achieved with longitudinal waves of sufficient tension, this work demonstrates that acoustic cavitation can also be generated from transverse waves. Our experiments identify three waves originating at the boundaries: the fastest is the bulk wave in the solid, followed by a leaky Rayleigh wave at the liquid-solid contact, which is trailed by a Lamb-type wave. For the latter, the two solid boundaries act as a wave guide and generate intense and short-lived cavitation activity within the gap. Streak photography and high-speed photography reveal the microsecond-duration cavitation-bubble dynamics, and subpicosecond strobe photography visualizes the mechanism of bubble nucleation from the accelerated surface. Simulations coupling the solid mechanics with the acoustics support the experimentally observed mechanisms of transverse-wave-induced cavitation inception.
FemtoLux 3 laser for the rapid wide-field second harmonic generation microscopy
FemtoLux 3 laser was used as an illumination source in the wide-field second harmonic generation (SHG) microscope. Relatively high laser pulse energy at a medium pulse repetition frequency allowed for a faster single image acquisition compared to that using laser-scanning. It was also possible to acquire images of relatively large sample areas, which paved the way for the rapid imaging of macroscopic sample areas with microscopic resolution.
Room-temperature lasing from nanophotonic topological cavities
The study of topological phases of light underpins a promising paradigm for engineering disorder-immune compact photonic devices with unusual properties. Combined with an optical gain, topological photonic structures provide a novel platform for micro- and nanoscale lasers, which could benefit from nontrivial band topology and spatially localized gap states. Here, we propose and demonstrate experimentally active nanophotonic topological cavities incorporating III–V semiconductor quantum wells as a gain medium in the structure. We observe room-temperature lasing with a narrow spectrum, high coherence, and threshold behaviour. The emitted beam hosts a singularity encoded by a triade cavity mode that resides in the bandgap of two interfaced valley-Hall periodic photonic lattices with opposite parity breaking. Our findings make a step towards topologically controlled ultrasmall light sources with nontrivial radiation characteristics.
Subwavelength dielectric resonators for nonlinear nanophotonics
Bound states in the continuum (BICs) represent localized modes with energies embedded in the continuous spectrum of radiating waves. BICs were discovered initially as a mathematical curiosity in quantum mechanics, and more recently were employed in photonics. Pure mathematical bound states have infinitely-large quality factors (Q factors) and zero resonant linewidth. In optics, BICs are physically limited by a finite size, material absorption, structural disorder, and surface scattering, and they manifest themselves as the resonant states with large Q factors, also known as supercavity modes or quasi-BICs. Optical BIC resonances have been demonstrated only in extended 2D and 1D systems and have been employed for distinct applications including lasing and sensing. Optical quasi-BIC modes in individual nanoresonators have been discovered recently but they were never observed in experiment. Here, we demonstrate experimentally an isolated subwavelength nanoresonator hosting a quasi-BIC resonance. We fabricate the resonator from AlGaAs material on an engineered substrate, and couple to the quasi-BIC mode using structured light. We employ the resonator as a nonlinear nanoantenna and demonstrate record-high efficiency of second-harmonic generation. Our study brings a novel platform to resonant subwavelength photonics.
Thermal control of SZ2080 photopolymerization in four-beam interference lithography
Photopolymerization by four-beam interference lithography on a preheated SZ2080 sample was explored at different initial temperatures of the sample: 20 °C, 50 °C, 75 °C, 100 °C, 125 °C, and 150 °C, and at exposure times ranging from 0.5 s to 5 s. The average laser power selected was ∼100 mW for the 300 ps duration pulses at a 1 kHz repetition rate. The experimental results demonstrate that the higher initial temperature of the sample positively influences the crosslinking of the patterns. These findings will improve polymerization protocols for multi-beam interference lithography.
Glass dicing with elliptical Bessel beam
In this paper the possibility to optimize the glass dicing process by controlling the axicon-generated Bessel beam ellipticity is presented. Single-shot intra-volume modifications in soda-lime glass followed by dicing experiments of 1 mm-thick samples are performed. The Bessel beam ellipticity is essential for glass dicing process. Such beam generates intra-volume modifications with transverse crack propagation in dominant direction. Orientation of these modifications parallel to the dicing direction gives significant advantages in terms of processing speed, glass breaking force and cutting quality.
High-efficiency laser fabrication of drag reducing riblet surfaces on pre-heated Teflon
Bio-inspired surfaces are able to decrease friction with fluids and gases. The most recognizable are shark-skin-like riblet surface structures. Such bio-inspired surfaces can be formed by the laser ablation technique. In this work, bio-inspired riblet surfaces with grooves were formed using picosecond ultraviolet laser ablation on pre-heated polytetrafluoroethylene (PTFE) at various sample temperatures. The ablation of hot PTFE was found to be 30% more efficient than the conventional laser structuring at the room temperature. The friction of structured PTFE surfaces with the flowing air was investigated by using drag a measurement setup. Results show the decrease of friction force by 6% with dimensionless riblet spacing around 14–20.
Laser-Ablated Silicon in the Frequency Range From 0.1 to 4.7 THz
The optical performance of high-resistivity silicon with a laser-ablated surface was studied in the transmission mode in the frequency range of 0.1-4.7 THz. A reciprocal relationship between the transmission brightness and the surface roughness was observed at discrete THz frequencies. The measured dispersion was reproduced by the THz wave scattering theory using an effective refractive index model. No significant differences between the samples processed either with psor ns-duration laser pulses in ambient air or in argon enriched atmosphere were found in the THz regime. It was demonstrated that the majority of optical losses of the silicon with the laser modified surface were due to the scattering of THz waves and not due to the absorption in silicon-compounds formed during the laser ablation.
Laser-assisted selective copper deposition on commercial PA6 by catalytic electroless plating – Process and activation mechanism
Results of in-depth experimental analysis of the laser-assisted local copper deposition on commercial Polyamide 6 (PA 6) are presented. Pico- and nanosecond lasers were validated for surface modification of the polymer followed by silver (I) activation and finished by autocatalytic electroless copper plating on the laser-modified areas. Detailed investigations were dedicated to finding out the origin of selective metal plating, including the surface profiling and wettability dynamics, XPS analysis and electric resistance measurements of the deposited copper layer. Based on the experimental data, the mechanism of the polymer surface activation by the laser modification is proposed.
Mechanism of pillars formation using four-beam interference lithography
Three different experiments were performed in order to determine the mechanism of pillars formation using four-beam interference lithography. The experimental results demonstrate that pillars, fabricated in argon gas, were wider and higher compared with the pillars fabricated in nitrogen gas, low vacuum or air. It clearly indicates that the pillar bottom widening effect is not affected by the depletion of atmospheric oxygen as in all environments the fabricated pillars have a wider bottom part. Moreover, the shape of the fabricated pillars is not affecting by the back reflection from the positioning stage and by the light irradiation conditions. These results clearly indicate that the photopolymerization process is enhanced by the heat current and it determines the pillar bottom widening effect.