Publication database
11% efficiency solid-state dye-sensitized solar cells with copper (II/I) hole transport materials
Solid-state dye-sensitized solar cells currently suffer from issues such as inadequate nanopore filling, low conductivity and crystallization of hole-transport materials infiltrated in the mesoscopic TiO2 scaffolds, leading to low performances. Here we report a record 11% stable solid-state dye-sensitized solar cell under standard air mass 1.5 global using a hole-transport material composed of a blend of [Cu (4,4′,6,6′-tetramethyl-2,2′-bipyridine)2](bis(trifluoromethylsulfonyl)imide)2 and [Cu (4,4′,6,6′-tetramethyl-2,2′-bipyridine)2](bis(trifluoromethylsulfonyl)imide). The amorphous Cu(II/I) conductors that conduct holes by rapid hopping infiltrated in a 6.5 μm-thick mesoscopic TiO2 scaffold are crucial for achieving such high efficiency. Using time-resolved laser photolysis, we determine the time constants for electron injection from the photoexcited sensitizers Y123 into the TiO2 and regeneration of the Y123 by Cu(I) to be 25 ps and 3.2 μs, respectively. Our work will foster the development of low-cost solid-state photovoltaic based on transition metal complexes as hole conductors.
A structural and temporal study of the surfactants behenyltrimethylammonium methosulfate and behenyltrimethylammonium chloride adsorbed at air/water and air/glass interfaces using sum frequency generation spectroscopy
Molecular scale information about the structure of surfactants at interfaces underlies their application in consumer products. In this study the non-linear optical technique of Sum Frequency Generation (SFG) vibrational spectroscopy has been used to investigate the structure and temporal behaviour of two cationic surfactants used frequently in hair conditioners. SFG spectra of films of behenyltrimethylammonium methosulfate (BTMS) and behenyltrimethylammonium chloride (BTAC) were recorded at the air/water interface and on glass slides following Langmuir Blodgett (LB) deposition. The assignment of the BTMS and BTAC spectral features (resonances) to the C---H stretching modes of the surfactants was consolidated by comparison with the SFG spectrum of deuterated cetyltrimethylammonium bromide (d-CTAB) and by recording spectra on D2O as well as on water. The C---H resonances arise from the methylene and methyl groups of the tail and head-groups of the surfactants. A slow collapse mechanism was observed following film compression of both BTAC and BTMS. The change in molecular structure of the films undergoing this slow collapse was followed by recording sequential SFG spectra in the C---H region, and by monitoring the SFG intensity at specific wavenumbers over time. Additionally, LB deposition onto glass was used to capture the state of the film during the slow collapse, and these SFG spectra showed close similarity to the corresponding spectra on water. Complementary Atomic Force Microscopy (AFM) was used to elucidate the layering of the compressed and relaxed films deposited onto mica by LB deposition.
Capturing an initial intermediate during the P450nor enzymatic reaction using time-resolved XFEL crystallography and caged-substrate
Time-resolved serial femtosecond crystallography using an X-ray free electron laser (XFEL) in conjunction with a photosensitive caged-compound offers a crystallographic method to track enzymatic reactions. Here we demonstrate the application of this method using fungal NO reductase, a heme-containing enzyme, at room temperature. Twenty milliseconds after caged-NO photolysis, we identify a NO-bound form of the enzyme, which is an initial intermediate with a slightly bent Fe-N-O coordination geometry at a resolution of 2.1 Å. The NO geometry is compatible with those analyzed by XFEL-based cryo-crystallography and QM/MM calculations, indicating that we obtain an intact Fe3+-NO coordination structure that is free of X-ray radiation damage. The slightly bent NO geometry is appropriate to prevent immediate NO dissociation and thus accept H− from NADH. The combination of using XFEL and a caged-compound is a powerful tool for determining functional enzyme structures during catalytic reactions at the atomic level.
Dye-sensitized solar cells for efficient power generation under ambient lighting
Solar cells that operate efficiently under indoor lighting are of great practical interest as they can serve as electric power sources for portable electronics and devices for wireless sensor networks or the Internet of Things. Here, we demonstrate a dye-sensitized solar cell (DSC) that achieves very high power-conversion efficiencies (PCEs) under ambient light conditions. Our photosystem combines two judiciously designed sensitizers, coded D35 and XY1, with the copper complex Cu(II/I)(tmby) as a redox shuttle (tmby, 4,4′,6,6′-tetramethyl-2,2′-bipyridine), and features a high open-circuit photovoltage of 1.1 V. The DSC achieves an external quantum efficiency for photocurrent generation that exceeds 90% across the whole visible domain from 400 to 650 nm, and achieves power outputs of 15.6 and 88.5 μW cm–2 at 200 and 1,000 lux, respectively, under illumination from a model Osram 930 warm-white fluorescent light tube. This translates into a PCE of 28.9%.
Excited State Dynamics of 6-Thioguanine
Here we present the excited state dynamics of jet-cooled 6-thioguanine (6-TG), using resonance-enhanced multiphoton ionization (REMPI), IR–UV double resonance spectroscopy, and pump–probe spectroscopy in the nanosecond and picosecond time domains. We report data on two thiol tautomers, which appear to have different excited state dynamics. These decay to a dark state, possibly a triplet state, with rates depending on tautomer form and on excitation wavelength, with the fastest rate on the order of 1010 s–1. We also compare 6-TG with 9-enolguanine, for which we observed decay to a dark state with a 2 orders of magnitude smaller rate. At increased excitation energy (∼+500 cm–1) an additional pathway appears for the predominant thiol tautomer. Moreover, the excited state dynamics for 6-TG thiols is different from that recently predicted for thiones.
Excited-State Dynamics of Isocytosine: A Hybrid Case of Canonical Nucleobase Photodynamics
We present resonant two-photon ionization (R2PI) spectra of isocytosine (isoC) and pump–probe results on two of its tautomers. IsoC is one of a handful of alternative bases that have been proposed in scenarios of prebiotic chemistry. It is structurally similar to both cytosine (C) and guanine (G). We compare the excited-state dynamics with the Watson–Crick (WC) C and G tautomeric forms. These results suggest that the excited-state dynamics of WC form of G may primarily depend on the heterocyclic substructure of the pyrimidine moiety, which is chemically identical to isoC. For WC isoC we find a single excited-state decay with a rate of ∼1010 s–1, while the enol form has multiple decay rates, the fastest of which is 7 times slower than for WC isoC. The excited-state dynamics of isoC exhibits striking similarities with that of G, more so than with the photodynamics of C.
Hybrid Photoacoustic/Ultrasound tomograph for real time finger imaging
We report a target-enclosing, hybrid tomograph with a total of 768 elements based on capacitive micromachined ultrasound transducer technology and providing fast, high-resolution 2-D/3-D photoacoustic and ultrasound tomography tailored to finger imaging.A freely programmable ultrasound beamforming platform sampling data at 80 MHz was developed to realize plane wave transmission under multiple angles. A multiplexing unit enables the connection and control of a large number of elements. Fast image reconstruction is provided by GPU processing. The tomograph is composed of four independent and fully automated movable arc-shaped transducers, allowing imaging of all three finger joints. The system benefits from photoacoustics, yielding high optical contrast and enabling visualization of finger vascularization, and ultrasound provides morphologic information on joints and surrounding tissue. A diode-pumped, Q-switched Nd:YAG laser and an optical parametric oscillator are used to broaden the spectrum of emitted wavelengths to provide multispectral imaging. Custom-made optical fiber bundles enable illumination of the region of interest in the plane of acoustic detection. Precision in positioning of the probe in motion is ensured by use of a motor-driven guide slide. The current position of the probe is encoded by the stage and used to relate ultrasound and photoacoustic signals to the corresponding region of interest of the suspicious finger joint. The system is characterized in phantoms and a healthy human finger in vivo. The results obtained promise to provide new opportunities in finger diagnostics and establish photoacoustic/ultrasoundtomography in medical routine.
Infrared spectroscopy of O˙⁻OH⁻ in water clusters: evidence for fast interconversion between O˙⁻ and OH˙ OH⁻
We present infrared multiple photon dissociation (IRMPD) spectra of (H2O)nO˙− and (H2O)nOH− cluster ensembles for ñ ≈ 8 and 47 in the range of 2400–4000 cm−1. Both hydrated ions exhibit the same spectral features, in good agreement with theoretical calculations. Decomposition of the calculated spectra shows that bands originating from H2O⋯O˙− and H2O⋯OH− interactions span almost the whole spectral region of interest. Experimentally, evaporation of OH˙ is observed to a small extent, which requires interconversion of (H2O)nO˙− into (H2O)n–1OH˙OH−, with subsequent H2O evaporation preferred over OH˙ evaporation. The modeling shows that (H2O)nO˙− and (H2O)n–1OH˙OH− cannot be distinguished by IRMPD spectroscopy.
Lipofuscin-mediated photic stress inhibits phagocytic activity of ARPE-19 cells; effect of donors’ age and antioxidants
The risk of chronic oxidative stress in the retinal pigment epithelium (RPE) increases with age due to accumulation of the photoreactive age pigment lipofuscin (LFG). Here, we asked whether sublethal and weakly lethal photic stress, induced by irradiation of ARPE-19 cells containing phagocytised LFG, affected the cell specific phagocytic activity, which is critically important for proper functioning and survival of the retina, and if natural antioxidants could modify the observed outcomes. ARPE-19 cells preloaded with LFG isolated from human donors of different age or containing LFG enriched with zeaxanthin and α-tocopherol (LFG-A), were irradiated with blue light. Phagocytosis of fluorescein-5-isothiocyanate (FITC)-labelled photoreceptor outer segments was determined by flow cytometry. Photoreactivity of LFG and LFG-A was analysed by measuring photoconsumption of oxygen and photogeneration of singlet oxygen mediated by the granules. LFG-mediated photic stress in ARPE-19 cells induced significant inhibition of their specific phagocytosis. The inhibitory effect increased with age of LFG donors and was reduced by enrichment of the granules with antioxidants. Oxygen consumption and generation of singlet oxygen induced by the photoexcited LFG increased with donor’s age and was partially quenched by antioxidants. Although the phototoxic potential of lipofuscin increased with age, natural antioxidants reduced photoreactivity of LFG and their efficiency to induce oxidative stress. This study has demonstrated, for the first time, that mild oxidative stress, mediated by the age pigment lipofuscin, impairs specific phagocytic activity of RPE, and that natural antioxidants can protect this important cellular function by reducing lipofuscin photoreactivity.
Luminescence spectroscopy of chalcogen substituted rhodamine cations in vacuo
Intrinsic optical properties of several rhodamine cations were probed by measuring their dispersed fluorescence spectra in vacuo. Three different rhodamine structures were investigated, each with four different chalcogen heteroatoms. Fluorescence band maxima were blue-shifted by between 0.15 and 0.20 eV (1200-1600 cm4) relative to previous solution-phase measurements. Trends in emission wavelengths and fluorescence quantum yields previously measured in solution are generally reproduced in the gas phase, confirming the intrinsic nature of these effects. One important exception is gas-phase brightness of the Texas Red analogues, which is significantly higher than the other rhodamine structures studied, despite having similar fluorescence quantum yields in solution. These results expand the library of fluorophores for which gas-phase photophysical data is available, and will aid in the design of experiments utilizing gas-phase structural biology methods such as Forster resonance energy transfer.