Publication database
Formation of through-glass vias (TGVs) in glass substrates using femtosecond laser operating in MHz/GHz burst mode
The increasing demand for miniaturized and high-performance consumer electronics has driven advancements in packaging solutions, including the transition to glass interposers. One of the critical aspects of the development is the fabrication of high-density through-glass vias (TGVs). This article presents the formation of TGVs in various glass substrates using an industrial femtosecond laser FemtoLux 30 operating in different operation modes – single-pulse, MHz burst, GHz burst and MHz+GHz burst modes. By employing burst mode and advanced machining methods such as bottom-up milling – TGVs fabrication is possible. With specific parameter sets TGVs with aspect ratios exceeding 1:80 was achieved, with drilling times as low as 350 ms. Additionally, to address current challenges in making electric traces on substrates, it introduces Selective Surface Activation Induced by Laser (SSAIL) as a unique complementary metallization technology, enabling direct copper deposition on different materials like ceramic, plastics and most importantly – glass, for complete packaging workflows. The findings demonstrate the potential of the FemtoLux femtosecond laser as a high-throughput and precise solution not only for TGV fabrication, but also for Selective Surface Activation Induced by Laser (SSAIL) based metallization - supporting next-generation semiconductor advanced packaging solutions.