Publication database
Sensitive Water Probing through Nonlinear Photon Upconversion of Lanthanide-Doped Nanoparticles
Lanthanide-doped upconversion nanoparticles have received growing attention in the development of low-background, highly sensitive and selective sensors. Here, we report a water probe based on ligand-free NaYF4:Yb/Er nanoparticles, utilizing their intrinsically nonlinear upconversion process. The water molecule sensing was realized by monitoring the upconversion emission quenching, which is mainly attributed to efficient energy transfer between upconversion nanoparticles and water molecules as well as water-absorption-induced excitation energy attenuation. The nonlinear upconversion process, together with power function relationship between upconversion emission intensity and excitation power density, offers a sensitive detection of water content down to 0.008 vol % (80 ppm) in an organic solvent. As an added benefit, we show that noncontact detection of water can be achieved just by using water attenuation effect. Moreover, these upconversion nanoparticle based recyclable probes should be particularly suitable for real-time and long-term water monitoring, due to their superior chemical and physical stability. These results could provide insights into the design of upconversion nanoparticle based sensors.
Enhancement of objects in photoacoustic tomography using selective filtering
Here we developed a real-time photoacoustic tomography (PAT) imaging acquisition device based on the linear array transducer utilized on ultrasonic devices. Also, we produced a phantom including diverse contrast media and acquired PAT imaging as the light source wavelength was changing to see if the contrast media reacted. Indocyanine green showed the highest reaction around the 800-nm band, methylene blue demonstrated the same in the 750-nm band, and gold nanoparticle showed the same in the 700-nm band. However, in the case of superparamagnetic iron oxide, we observed not reaction within the wavelength bands used herein to obtain imaging. Moreover, we applied selective filtering to the acquired PAT imaging to remove noise from around and reinforce the object’s area. Consequentially, we could see the object area in the imaging was effectively detected and the image noise was removed.