Publication database
Soft x-ray emission from laser-produced strontium ions
Soft x-ray spectra, in the range from 2 nm to 9 nm, were recorded from strontium plasmas formed by pulses from 20 ps, 170 ps and 5.5 ns Nd:YAG lasers operating at the fundamental wavelength of 1064 nm. Features due to 3d–4p and 3d–4f transitions were identified by comparison with spectra from adjacent ions and atomic structure calculations with both the Cowan code and the Flexible Atomic Code. As in the spectra of ions of other elements in the fifth row of the periodic table, resonant lines 3dn–3dn−14p1, 3dn–3dn−14f1 and satellite lines 3dn−14s1–3dn−24s14p1, 3dn−14s1–3dn−24s14f1 of Δn = 1 were observed over the 3.0–8.5 nm region, emitted by 10+ to 19+ ions. These Δn = 1 transitions provide a range of narrow band emission features which may match to specific multi layer combinations for reflective optics in the extreme ultraviolet region of the spectrum.
Thermochemical writing with high spatial resolution on Ti films utilising picosecond laser
In this paper, we investigate the local oxidation of titanium thin films under the action of picosecond laser pulses. Periodical structures were recorded by the multi-beam interference scheme utilizing various numbers of laser beams, and the relationship between spatial resolution and the contrast of the structures was studied. The Raman spectra of the laser processing regions confirmed the oxidation even under the action of a single picosecond pulse. An analytical simulation of titanium film oxidation in the interference field was provided, and obtained results are correlated with the experimental data. The results of theoretical modeling show that the thermochemical effects of picosecond laser pulses allow recording periodic structures with a period of 0.65 lines per μm. The demonstrated results are important in the adaptation of technological laser systems for the manufacture of diffractive optical elements.
Vibrational Relaxation Lifetime of a Physisorbed Molecule at a Metal Surface
Previous measurements of vibrational relaxation lifetimes for molecules adsorbed at metal surfaces yielded values of 1–3 ps; however, only chemisorbed molecules have been studied. We report the first measurements of the vibrational relaxation lifetime of a molecule physisorbed to a metal surface. For CO(υ=1) adsorbed on Au(111) at 35 K the vibrational lifetime of the excited stretching mode is 49±3 ps. The long lifetime seen here is likely to be a general feature of physisorption, which involves weaker electronic coupling between the adsorbate and the solid due to bonding at larger distances.
Advanced laser scanning for highly-efficient ablation and ultrafast surface structuring: experiment and model
Ultra-short laser pulses are frequently used for material removal (ablation) in science, technology and medicine. However, the laser energy is often used inefficiently, thus, leading to low ablation rates. For the efficient ablation of a rectangular shaped cavity, the numerous process parameters such as scanning speed, distance between scanned lines, and spot size on the sample, have to be optimized. Therefore, finding the optimal set of process parameters is always a time-demanding and challenging task. Clear theoretical understanding of the influence of the process parameters on the material removal rate can improve the efficiency of laser energy utilization and enhance the ablation rate. In this work, a new model of rectangular cavity ablation is introduced. The model takes into account the decrease in ablation threshold, as well as saturation of the ablation depth with increasing number of pulses per spot. Scanning electron microscopy and the stylus profilometry were employed to characterize the ablated depth and evaluate the material removal rate. The numerical modelling showed a good agreement with the experimental results. High speed mimicking of bio-inspired functional surfaces by laser irradiation has been demonstrated.
Compact diffractive optics for THz imaging
We present a compact diffractive silicon-based multilevel phase Fresnel lens (MPFL) with up to 50 mm in diameter and a numerical aperture up to 0.86 designed and fabricated for compact terahertz (THz) imaging systems. The laser direct writing technology based on a picosecond laser was used to fabricate diffractive optics on silicon with a different number of phase quantization levels P reaching an almost kinoform spherical surface needed for efficient THz beam focusing. Focusing performance was investigated by measuring Gaussian beam intensity distribution in the focal plane and along the optical axis of the lens. The beam waist and the focal depth for each MPFL were evaluated. The influence of the phase quantization number on the focused beam amplitude was estimated, and the power transmission efficiency reaching more than 90% was revealed. The THz imaging of less than 1 mm using a robust 50 mm diameter multilevel THz lens was achieved and demonstrated at 580 GHz frequency.
Conversion efficiency of a laser-plasma source based on a Xe jet in the vicinity of a wavelength of 11 nm
We optimized the parameters of a laser-produced plasma source based on a solid-state Nd: YAG laser (λ = 1.06 nm, pulse duration 4 ns, energy per pulse up to 500 mJ, repetition rate 10 Hz, lens focus distance 45 mm, maximum power density of laser radiation in focus 9 × 1011 W/cm2) and a double-stream Xe/He gas jet to obtain a maximum of radiation intensity around 11 nm wavelength. It was shown that the key factor determining the ionization composition of the plasma is the jet density. With the decreased density, the ionization composition shifts toward a smaller degree of ionization, which leads to an increase in emission peak intensity around 11 nm. We attribute the dominant spectral feature centred near 11 nm originating from an unidentified 4d-4f transition array in Xe+10…+13 ions. The exact position of the peak and the bandwidth of the emission line were determined. We measured the dependence of the conversion efficiency of laser energy into an EUV in-band energy with a peak at 10.82 nm from the xenon pressure and the distance between the nozzle and the laser focus. The maximum conversion efficiency (CE) into the spectral band of 10–12 nm measured at a distance between the nozzle and the laser beam focus of 0.5 mm was CE = 4.25 ± 0.30%. The conversion efficiencies of the source in-bands of 5 and 12 mirror systems at two wavelengths of 10.8 and 11.2 nm have been evaluated; these efficiencies may be interesting for beyond extreme ultraviolet lithography.
Fibonacci terahertz imaging by silicon diffractive optics
Fibonacci or bifocal terahertz (THz) imaging is demonstrated experimentally employing a silicon diffractive zone plate in continuous wave mode. Images simultaneously recorded in two different planes are exhibited at 0.6 THz frequency with the spatial resolution of wavelength. Multifocus imaging operation of the Fibonacci lens is compared with a performance of the conventional silicon phase zone plate. Spatial profiles and focal depth features are discussed varying the frequency from 0.3 to 0.6 THz. Good agreement between experimental results and simulation data is revealed.
Heavy Anionic Complex Creates a Unique Water Structure at a Soft Charged Interface
Ion hydration and interfacial water play crucial roles in numerous phenomena ranging from biological to industrial systems. Although biologically relevant (and mostly smaller) ions have been studied extensively in this context, very little experimental data exist about molecular-scale behavior of heavy ions and their complexes at interfaces, especially under technologically significant conditions. It has recently been shown that PtCl62– complexes adsorb at positively charged interfaces in a two-step process that cannot fit into well-known empirical trends, such as Hofmeister series. Here, a combined vibrational sum frequency generation and molecular dynamics study reveals that a unique interfacial water structure is connected to this peculiar adsorption behavior. A novel subensemble analysis of molecular dynamics simulation results shows that after adsorption PtCl62– complexes partially retain their first and second hydration spheres and that it is possible to identify three different types of water molecules around them on the basis of their orientational structures and hydrogen-bonding strengths. These results have important implications for relating interfacial water structure and hydration enthalpy to the general understanding of specific ion effects. This in turn influences interpretation of heavy metal ion distribution across, and reactivity within, liquid interfaces.
How nature covers its bases
The response of DNA and RNA bases to ultraviolet (UV) radiation has been receiving increasing attention for a number of important reasons: (i) the selection of the building blocks of life on an early earth may have been mediated by UV photochemistry, (ii) radiative damage of DNA depends critically on its photochemical properties, and (iii) the processes involved are quite general and play a role in more biomolecules as well as in other compounds. A growing number of groups worldwide have been studying the photochemistry of nucleobases and their derivatives. Here we focus on gas phase studies, which (i) reveal intrinsic properties distinct from effects from the molecular environment, (ii) allow for the most detailed comparison with the highest levels of computational theory, and (iii) provide isomeric selectivity. From the work so far a picture is emerging of rapid decay pathways following UV excitation. The main understanding, which is now well established, is that canonical nucleobases, when absorbing UV radiation, tend to eliminate the resulting electronic excitation by internal conversion (IC) to the electronic ground state in picoseconds or less. The availability of this rapid “safe” de-excitation pathway turns out to depend exquisitely on molecular structure. The canonical DNA and RNA bases are generally short-lived in the excited state, and thus UV protected. Many closely related compounds are longer lived, and thus more prone to other, potentially harmful, photochemical processes. It is this structure dependence that suggests a mechanism for the chemical selection of the building blocks of life on an early earth. However, the picture is far from complete and many new questions now arise.
Nanoscale thermal diffusion during the laser interference ablation using femto-, pico-, and nanosecond pulses in silicon
Laser interference ablation in silicon using femto-, pico-, and nanosecond pulses was investigated. The experimental and computational results provide information about nanoscale thermal diffusion during the ultra-short laser–matter interaction. The temperature modulation depth was introduced as a parameter for quality assessment of laser interference ablation. Based on the experiments and calculations, a new semi-empirical formula which combines the interference period with the laser pulse duration, the thermal modulation depth and the thermal diffusivity of the material was derived. This equation is in excellent agreement with the experimental and modelling results of laser interference ablation. This new formula can be used for selecting the appropriate pulse duration for periodical structuring with the required resolution and quality.