Publication database
Iminothioindoxyl as a molecular photoswitch with 100 nm band separation in the visible range
Light is an exceptional external stimulus for establishing precise control over the properties and functions of chemical and biological systems, which is enabled through the use of molecular photoswitches. Ideal photoswitches are operated with visible light only, show large separation of absorption bands and are functional in various solvents including water, posing an unmet challenge. Here we show a class of fully-visible-light-operated molecular photoswitches, Iminothioindoxyls (ITIs) that meet these requirements. ITIs show a band separation of over 100 nm, isomerize on picosecond time scale and thermally relax on millisecond time scale. Using a combination of advanced spectroscopic and computational techniques, we provide the rationale for the switching behavior of ITIs and the influence of structural modifications and environment, including aqueous solution, on their photochemical properties. This research paves the way for the development of improved photo-controlled systems for a wide variety of applications that require fast responsive functions.
Impact of molecular quadrupole moments on the energy levels at organic heterojunctions
The functionality of organic semiconductor devices crucially depends on molecular energies, namely the ionisation energy and the electron affinity. Ionisation energy and electron affinity values of thin films are, however, sensitive to film morphology and composition, making their prediction challenging. In a combined experimental and simulation study on zinc-phthalocyanine and its fluorinated derivatives, we show that changes in ionisation energy as a function of molecular orientation in neat films or mixing ratio in blends are proportional to the molecular quadrupole component along the π-π-stacking direction. We apply these findings to organic solar cells and demonstrate how the electrostatic interactions can be tuned to optimise the energy of the charge-transfer state at the donor−acceptor interface and the dissociation barrier for free charge carrier generation. The confirmation of the correlation between interfacial energies and quadrupole moments for other materials indicates its relevance for small molecules and polymers.
Infrared Spectroscopy of Size-Selected Hydrated Carbon Dioxide Radical Anions CO2.−(H2O)n (n=2–61) in the C−O Stretch Region
Understanding the intrinsic properties of the hydrated carbon dioxide radical anions CO2.−(H2O)n is relevant for electrochemical carbon dioxide functionalization. CO2.−(H2O)n (n=2–61) is investigated by using infrared action spectroscopy in the 1150–2220 cm−1 region in an ICR (ion cyclotron resonance) cell cooled to T=80 K. The spectra show an absorption band around 1280 cm−1, which is assigned to the symmetric C−O stretching vibration νs. It blueshifts with increasing cluster size, reaching the bulk value, within the experimental linewidth, for n=20. The antisymmetric C−O vibration νas is strongly coupled with the water bending mode ν2, causing a broad feature at approximately 1650 cm−1. For larger clusters, an additional broad and weak band appears above 1900 cm−1 similar to bulk water, which is assigned to a combination band of water bending and libration modes. Quantum chemical calculations provide insight into the interaction of CO2.− with the hydrogen-bonding network.
Luminescence spectroscopy of oxazine dye cations isolated in vacuo
Here we report gas-phase action and luminescence spectra of cationic dyes derived from oxazine: cresyl violet (CV+), oxazine 170 (Ox-170+), nile blue (NB+), darrow red (DR+), oxazine 1 (Ox-1+), oxazine 4 (Ox-4+), and brilliant cresyl blue (BCB+). The first four have a benzofused structure, which results in asymmetric charge distributions along the long axis. The positive charge is also asymmetrically distributed in BCB+ while Ox-1+ and Ox-4+ are symmetric. As the ions are isolated in vacuo, there are no interactions with solvent molecules or counter ions, and the effect of chemical modifications is therefore more easily revealed than from solution-phase experiments. The transition energy decreases in the order: DR+ > CV+ > Ox-4+ > Ox-170+ > BCB+ > Ox-1+ > NB+, and the fluorescence from BCB+ is less than from the others. We discuss the results based on electron delocalisation, degree of charge-transfer character, rigidity of the chromophore structure, and substituents.
Luminescence Spectroscopy of Rhodamine Homodimer Dications in Vacuo Reveals Strong Dye-Dye Interactions
Being alone or together makes a difference for the photophysics of dyes but for ionic dyes it is difficult to quantify the interactions due to solvent screening and nearby counter ions. Gas-phase luminescence experiments are desirable and now possible based on recent developments in mass spectrometry. Here we present results on tailor-made rhodamine homodimers where two dye cations are separated by methylene linkers, (CH2)n. In solution the fluorescence is almost identical to that from the monomer whereas the emission from bare cation dimers redshifts with decreasing n. In the absence of screening, the electric field from the charge on one dye is strong enough to polarize the other dye, both in the ground state and in the excited state. An electrostatic model based on symmetric dye responses (equal induced-dipole moments in ground state) captures the underlying physics and demonstrates interaction even at large distances. Our results have possible implications for gas-phase Förster Resonance Energy Transfer.
Probing the Structural Evolution of the Hydrated Electron in Water Cluster Anions (H2O)n–, n ≤ 200, by Electronic Absorption Spectroscopy
Electronic absorption spectra of water cluster anions (H2O)n–, n ≤ 200, at T = 80 K are obtained by photodissociation spectroscopy and compared with simulations from literature and experimental data for bulk hydrated electrons. Two almost isoenergetic electron binding motifs are seen for cluster sizes 20 ≤ n ≤ 40, which are assigned to surface and partially embedded isomers. With increasing cluster size, the surface isomer becomes less populated, and for n ≥ 50, the partially embedded isomer prevails. The absorption shifts to the blue, reaching a plateau at n ≈ 100. In this size range, the absorption spectrum is similar to that of the bulk hydrated electron but is slightly red-shifted; spectral moment analysis indicates that these clusters are reasonable model systems for hydrated electrons near the liquid–vacuum interface.
Pulsed photo-ionization spectroscopy of traps in as-grown and neutron irradiated ammonothermally synthesized GaN
GaN-based structures are promising for production of radiation detectors and high-voltage high-frequency devices. Particle detectors made of GaN are beneficial as devices simultaneously generating of the optical and electrical signals. Photon-electron coupling cross-section is a parameter which relates radiation absorption and emission characteristics. On the other hand, photon-electron coupling cross-section together with photo-ionization energy are fingerprints of deep centres in material. In this work, the wafer fragments of the GaN grown by ammonothermal (AT) technology are studied to reveal the dominant defects introduced by growth procedures and reactor neutron irradiations in a wide range, 1012–1016 cm−2, of fluences. Several defects in the as-grown and irradiated material have been revealed by using the pulsed photo-ionization spectroscopy (PPIS) technique. The PPIS measurements were performed by combining femtosecond (40 fs) and nanosecond (4 ns) laser pulses emitted by optical parametric oscillators (OPO) to clarify the role of electron-phonon coupling. Variations of the operational characteristics of the tentative sensors, made of the AT GaN doped with Mg and Mn, under radiation damage by reactor neutrons have been considered.
The importance of relativistic effects on two-photon absorption spectra in metal halide perovskites
Despite intense research into the optoelectronic properties of metal halide perovskites (MHPs), sub-bandgap absorption in MHPs remains largely unexplored. Here we recorded two-photon absorption spectra of MHPs using the time-resolved microwave conductivity technique. A two-step upward trend is observed in the two-photon absorption spectrum for methylammonium lead iodide, and some analogues, which implies that the commonly used scaling law is not applicable to MHPs. This aspect is further confirmed by temperature-dependent conductivity measurements. Using an empirical multiband tight binding model, spectra for methylammonium lead iodide were calculated by integration over the entire Brillouin zone, showing compelling similarity with experimental results. We conclude that the second upward trend in the two-photon absorption spectrum originates from additional optical transitions to the heavy and light electron bands formed by the strong spin-orbit coupling. Hence, valuable insight can be obtained in the opto-electronic properties of MHPs by sub-bandgap spectroscopy, complemented by modelling.
Vibrational Relaxation Lifetime of a Physisorbed Molecule at a Metal Surface
Previous measurements of vibrational relaxation lifetimes for molecules adsorbed at metal surfaces yielded values of 1–3 ps; however, only chemisorbed molecules have been studied. We report the first measurements of the vibrational relaxation lifetime of a molecule physisorbed to a metal surface. For CO(υ=1) adsorbed on Au(111) at 35 K the vibrational lifetime of the excited stretching mode is 49±3 ps. The long lifetime seen here is likely to be a general feature of physisorption, which involves weaker electronic coupling between the adsorbate and the solid due to bonding at larger distances.
Charge carrier transport in polycrystalline CH3NH3PbI3 perovskite thin films in a lateral direction characterized by time-of-flight photoconductivity
We used time-of-flight photocurrent measurements to determine the role of grain boundaries in charge carrier transport in thin layers of methyl ammonium lead iodide (CH3NH3PbI3). The measurement results were compared to Kinetic Monte Carlo simulations, based on a transport model, which disentangles the transport within crystallites and hopping across grain boundaries. The observed mobilities of electrons are in the order ∼2.5 × 10−1 cm2V−1s−1. The hopping across grains is modeled with an Arrhenius-type probability rate, characterized by activation energy (Ea). It was found that the Ea estimated from the slope of a mobility-temperature dependence is in the range of ∼56–70 meV. The factors contributing to Ea are shunting pathways and the grain-size variations including energy level misalignments at the grain boundaries. These results represent a step toward a design of novel windowless organic-inorganic perovskite solar cells.