Publication database
EUV spectra from highly charged terbium ions in optically thin and thick plasmas
We have observed extreme ultraviolet (EUV) spectra from terbium (Tb) ions in optically thin and thick plasmas for a comparative study. The experimental spectra are recorded in optically thin, magnetically confined torus plasmas and dense laser-produced plasmas (LPPs). The main feature of the spectra is quasicontinuum emission with a peak around 6.5-6.6 nm, the bandwidth of which is narrower in the torus plasmas than in the LPPs. A comparison between the two types of spectra also suggests strong opacity effects in the LPPs. A comparison with the calculated line strength distributions gives a qualitative interpretation of the observed spectra.
Table top TW-class OPCPA system driven by tandem femtosecond Yb:KGW and picosecond Nd:YAG lasers
We present a compact TW-class OPCPA system operating at 800 nm. Broadband seed pulses are generated and pre-amplified to 25 μJ in a white light continuum seeded femtosecond NOPA. Amplification of the seed pulses to 35 mJ at a repetition rate of 10 Hz and compression to 9 fs is demonstrated.
Emission properties of ns and ps laser-induced soft x-ray sources using pulsed gas jets
The influcence of the pulse duration on the emission characteristics of nearly debris-free laser-induced plasmas in the soft x-ray region (λ ≈1-5 nm) was investigated, using six different target gases from a pulsed jet. Compared to ns pulses of the same energy, a ps laser generates a smaller, more strongly ionized plasma, being about 10 times brighter than the ns laser plasma. Moreover, the spectra are considerably shifted towards shorter wavelengths. Electron temperatures and densities of the plasma are obtained by comparing the spectra with model calculations using a magneto-hydrodynamic code.
Enhancement of Laser-Induced Breakdown Spectroscopy (LIBS) Detection Limit Using a Low-Pressure and Short-Pulse Laser-Induced Plasma Process
Laser-induced breakdown spectroscopy (LIBS) technology is an appealing technique compared with many other types of elemental analysis because of the fast response, high sensitivity, real-time, and noncontact features. One of the challenging targets of LIBS is the enhancement of the detection limit. In this study, the detection limit of gas-phase LIBS analysis has been improved by controlling the pressure and laser pulse width. In order to verify this method, low-pressure gas plasma was induced using nanosecond and picosecond lasers. The method was applied to the detection of Hg. The emission intensity ratio of the Hg atom to NO (IHg/ INO) was analyzed to evaluate the LIBS detection limit because the NO emission (interference signal) was formed during the plasma generation and cooling process of N2 and O2 in the air. It was demonstrated that the enhancement of IHg/INO arose by decreasing the pressure to a few kilopascals, and the IHg/INO of the picosecond breakdown was always much higher than that of the nanosecond breakdown at low buffer gas pressure. Enhancement of IHg/INO increased more than 10 times at 700 Pa using picosecond laser with 35 ps pulse width. The detection limit was enhanced to 0.03 ppm (parts per million). We also saw that the spectra from the center and edge parts of plasma showed different features. Comparing the central spectra with the edge spectra, IHg/INO of the edge spectra was higher than that of the central spectra using the picosecond laser breakdown process.