Publication database
Photoacoustic imaging of voltage responses beyond the optical diffusion limit
Non-invasive optical imaging of neuronal voltage response signals in live brains is constrained in depth by the optical diffusion limit, which is due primarily to optical scattering by brain tissues. Although photoacoustic tomography breaks this limit by exciting the targets with diffused photons and detecting the resulting acoustic responses, it has not been demonstrated as a modality for imaging voltage responses. In this communication, we report the first demonstration of photoacoustic voltage response imaging in both in vitro HEK-293 cell cultures and in vivo mouse brain surfaces. Using spectroscopic photoacoustic tomography at isosbestic wavelengths, we can separate voltage response signals and hemodynamic signals on live brain surfaces. By imaging HEK-293 cell clusters through 4.5 mm thick ex vivo rat brain tissue, we demonstrate photoacoustic tomography of cell membrane voltage responses beyond the optical diffusion limit. Although the current voltage dye does not immediately allow in vivo deep brain voltage response imaging, we believe our method opens up a feasible technical path for deep brain studies in the future.
Photoacoustic signal detection using interferometric fiber-optic ultrasound transducers
The cross-section of a metallic sample was photoacoustically imaged using a pulsed nanosecond laser as the excitation source and a fiber-optic hydrophone system to acquire the pressure signal. The ultrasound sensor was an extrinsic Fabry-Perot fiber-optic interferometer and the band-limited photodetected output signal was recorded in a digital oscilloscope. In order to reconstruct the image, a time set of ultrasound signals acquired in a circular scan around the sample were used to solve the time-reversal equations. It was observed that image contrast can be enhanced considering the deconvolution of the sensor frequency response from each measured pressure signal.
Photodissociation spectroscopy of protonated leucine enkephalin
Protonated leucine enkephalin (YGGFL) was studied by ultraviolet photodissociation (UVPD) from 225 to 300 nm utilizing an optical parametric oscillator tunable wavelength laser system (OPO). Fragments were identified by absolute mass measurement in a 9.4 T Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS). Bond cleavage was preferred in the vicinity of the two aromatic residues, resulting in high ion abundances for a4, a1, b3, y2 and y1 fragments. a, b and y ions dominated the mass spectrum, and full sequence coverage was achieved for those types. Photodissociation was most effective at the short wavelength end of the studied range, which is assigned to the onset of the La π–π* transition of the tyrosine chromophore, but worked well also at the Lb π–π* chromophore absorption maxima in the 35 000–39 000 cm−1 region. Several side-chain and internal fragments were observed. H atom loss is observed only above 41 000 cm−1, consistent with the requirement of a curve crossing to a repulsive 1πσ* state. It is suggested that the photochemically generated mobile H atom plays a role in further backbone cleavages, similar to the mechanism for electron capture dissociation. The b4 fragment is most intense at the Lb chromophore absorptions, undergoing additional fragmentation at higher photon energies. The high resolution of the FT-ICR MS revealed that out of all x and z-type fragments only x3 and x4 were formed, with low intensity. Other previously reported x- and z-fragments were re-assigned to internal fragments, based on exact mass measurement.
Picosecond laser registration of interference pattern by oxidation of thin Cr films
The laser oxidation of thin metallic films followed by its selective chemical etching is a promising method for the formation of binary metal structures on the glass substrates. It is important to confirm that even a single ultrashort laser pulse irradiation is able to create the protective oxide layer that makes possible to imprint the thermochemical image.
Results of the thermo-chemical treatment of thin chromium films irradiated by picosecond laser pulse utilizing two and four beam interference combined with the chemical etching are presented. The spatial resolution of this method can be high enough due to thermo-chemical sharpening and can be close to the diffraction limit. Micro-Raman spectroscopy was applied for characterization of the chemical composition of the protective oxide layers formed under atmospheric conditions on the surface of thin chromium films.
Picosecond pulsed laser ablation for the surface preparation of epoxy composites
As part of a technical challenge under the Advanced Composites Program, methods for improving pre-bond process control for aerospace composite surface treatments and inspections, in conjunction with Federal Aviation Administration guidelines, are under investigation. The overall goal is to demonstrate high fidelity, rapid and reproducible surface treatment and surface characterization methods to reduce uncertainty associated with the bonding process. The desired outcomes are reliable bonded airframe structure, and reduced timeline to certification. In this work, laser ablation was conducted using a q-switched Nd:YVO4 laser capable of nominal pulse durations of 8 picoseconds (ps). Aerospace structural carbon fiber reinforced composites with an epoxy resin matrix were laser treated, characterized, processed into bonded assemblies and mechanically tested. The characterization of ablated surfaces were conducted using scanning electron microscopy (SEM), water contact angle (WCA) goniometry, micro laser induced breakdown spectroscopy (uLIBS), and electron spin resonance (ESR). The bond performance was assessed using a double cantilever beam (DCB) test with an epoxy adhesive. The surface characteristics and bond performance obtained from picosecond ablated carbon fiber reinforced plastics (CFRPs) are presented herein.
Potassium Iodide Potentiates Antimicrobial Photodynamic Inactivation Mediated by Rose Bengal in In Vitro and In Vivo Studies
Rose bengal (RB) is a halogenated xanthene dye that has been used to mediate antimicrobial photodynamic inactivation for several years. While RB is highly active against Gram-positive bacteria, it is largely inactive in killing Gram-negative bacteria. We have discovered that addition of the nontoxic salt potassium iodide (100 mM) potentiates green light (540-nm)-mediated killing by up to 6 extra logs with the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, the Gram-positive bacterium methicillin-resistant Staphylococcus aureus, and the fungal yeast Candida albicans. The mechanism is proposed to be singlet oxygen addition to iodide anion to form peroxyiodide, which decomposes into radicals and, finally, forms hydrogen peroxide and molecular iodine. The effects of these different bactericidal species can be teased apart by comparing the levels of killing achieved in three different scenarios: (i) cells, RB, and KI are mixed together and then illuminated with green light; (ii) cells and RB are centrifuged, and then KI is added and the mixture is illuminated with green light; and (iii) RB and KI are illuminated with green light, and then cells are added after illumination with the light. We also showed that KI could potentiate RB photodynamic therapy in a mouse model of skin abrasions infected with bioluminescent P. aeruginosa.
Quantitative picosecond laser-induced fluorescence measurements of nitric oxide in flames
Quantitative concentrations measurements using time-resolved laser-induced fluorescence have been demonstrated for nitric oxide (NO) in flame. Fluorescence lifetimes measured using a picosecond Nd:YAG laser and optical parametric amplifier system have been used to directly compensate the measured signal for collisional quenching and evaluate NO concentration. The full evaluation also includes the spectral overlap between the ∼15 cm−1 broad laser pulse and multiple NO absorption lines as well as the populations of the probed energy levels. Effective fluorescence lifetimes of 1.2 and 1.5 ns were measured in prepared NO/N2/O2 mixtures at ambient pressure and temperature and in a premixed NH3-seeded CH4/N2/O2 flame, respectively. Concentrations evaluated from measurements in NO/N2/O2 mixtures with NO concentrations of 100–600 ppm were in agreement with set values within 3% at higher concentrations. An accuracy of 13% was estimated by analysis of experimental uncertainties. An NO profile measured in the flame showed concentrations of ∼1000 ppm in the post-flame region and is in good agreement with NO concentrations predicted by a chemical mechanism for NH3 combustion. An accuracy of 16% was estimated for the flame measurements. The direct concentration evaluation from time-resolved fluorescence allows for quantitative measurements in flames where the composition of major species and their collisional quenching on the probed species is unknown. In particular, this is valid for non-stationary turbulent combustion and implementation of the presented approach for measurements under such conditions is discussed.
Sibling rivalry: intrinsic luminescence from two xanthene dye monoanions, resorufin and fluorescein, provides evidence for excited-state proton transfer in the latter
While the emission spectrum of fluorescein monoanions isolated in vacuo displays a broad and featureless band, that of resorufin, also belonging to the xanthene family, has a sharp band maximum, clear vibronic structure, and experiences a small Stokes shift. Excited-state proton transfer in fluorescein can account for the differences.
Structure of the Fundamental Lipopeptide Surfactin at the Air/Water Interface Investigated by Sum Frequency Generation Spectroscopy
The lipopeptide surfactin produced by certain strains of Bacillus subtilis is a powerful biosurfactant possessing potentially useful antimicrobial properties. In order to better understand its surface behavior, we have used surface sensitive sum frequency generation (SFG) vibrational spectroscopy in the C—H and C═O stretching regions to determine its structure at the air/water interface. Using surfactin with the leucine groups of the peptide ring perdeuterated, we have shown that a majority of the SFG signals arise from the 4 leucine residues. We find that surfactin forms a robust film, and that its structure is not affected by the number density at the interface or by pH variation of the subphase. The spectra show that the ring of the molecule lies in the plane of the surface rather than perpendicular to it, with the tail lying above this, also in the plane of the interface.
Sum Frequency Generation Vibrational Spectroscopy for Characterization of Buried Polymer Interfaces
Sum frequency generation vibrational spectroscopy (SFG-VS) has become one of the most appealing technologies to characterize molecular structures at interfaces. In this focal point review, we focus on SFG-VS studies at buried polymer interfaces and review many of the recent publications in the field. We also cover the essential theoretical background of SFG-VS and discuss the experimental implementation of SFG-VS.