Publication database
Processing of ultra-hard materials with picosecond pulses: From research work to industrial applications
The ultrashort laser processing of the cutting tools and cutting inserts from tungsten carbide, ceramic and metal composites (CERMET), and polycrystalline diamond materials was demonstrated, and the ablation rates of mentioned ultra-hard materials were evaluated for a laser wavelength of 1064 and 532 nm. The optimal processing throughput was estimated. Laser manufacturing was performed with the five-axis computer numerical control (CNC) machine and scanner for beam translation with the high speed and the ultrashort ∼12 ps pulse duration high repetition rate laser source. The systematic approach was implemented in an experimental variation of process parameters that play a significant role in processing quality. By varying the laser fluence, pulse overlap, and layers’ count, different material removing rates can be achieved from 300 nm/layer to ∼18 μm/layer. The submicrometer removing rate involves a high precision control of the structure depth. It was demonstrated that only by a minor change of the processing parameters, the surface roughness of the material could be minimized down to Ra < 300 nm. Rough and smooth processing can be combined to optimize the structure processing throughput.
Ultrafast z-scanning for high-efficiency laser micro-machining
High-throughput laser micro-machining demands precise control of the laser beam position to achieve optimal efficiency, but existing methods can be both time-consuming and cost-prohibitive. In this paper, we demonstrate a new high-throughput micro-machining technique based on rapidly scanning the laser focal point along the optical axis using an acoustically driven variable focal length lens. Our results show that this scanning method enables higher machining rates over a range of defocus distances and that the effect becomes more significant as the laser energy is increased. In a specific example of silicon, we achieve a nearly threefold increase in the machining rate, while maintaining sharp side walls and a small spot size. This method has great potential for improving the micro-machining efficiency of conventional systems and also opens the door to applying laser machining to workpieces with uneven topography that have been traditionally difficult to process.
Fluorecence Microscopy Study of CdS quantum dots Obtained by Laser Irradiation from a Single Source Precursor in Polymeric Film
Recently the quantum dots (QDs) synthesis from single source precursors (SSPs) showed a potential interest for patterning formation of nano-composites. In this approach the SSPs have to be mixed with a matrix that afterwards is treated selectively to obtain the desired nanocomposite. The study of the generation of the QDs from the SSPs is, therefore, crucial for the definition of its behaviour within the polymeric matrix. The formation of the CdS QDs via thermolysis of the cadmium diethyldithiocarbamate (CdDDTC) was performed and studied in the presence of a non coordinating solvent such as octadecene (ODE) in presence of myristic acid (MA) as ligand. The precursor is then studied in combination with the poly(methyl methacrylate) (PMMA) polymer for the generation of the CdS QDs under the laser irradiation within a film. The effect of the laser has been studied both on neat PMMA and on the polymer/precursor blend film with the aid of the fluorescence microscope. The results are used to identify the optimal laser parameters to obtain the decomposition of the precursor and to evaluate the effect of the laser irradiation on the polymer.
Germanium Sub-Microspheres Synthesized by Picosecond Pulsed Laser Melting in Liquids: Educt Size Effects
Pulsed laser melting in liquid (PLML) has emerged as a facile approach to synthesize submicron spheres (SMSs) for various applications. Typically lasers with long pulse durations in the nanosecond regime are used. However, recent findings show that during melting the energy absorbed by the particle will be dissipated promptly after laser-matter interaction following the temperature decrease within tens of nanoseconds and hence limiting the efficiency of longer pulse widths. Here, the feasibility to utilize a picosecond laser to synthesize Ge SMSs (200~1000 nm in diameter) is demonstrated by irradiating polydisperse Ge powders in water and isopropanol. Through analyzing the educt size dependent SMSs formation mechanism, we find that Ge powders (200~1000 nm) are directly transformed into SMSs during PLML via reshaping, while comparatively larger powders (1000~2000 nm) are split into daughter SMSs via liquid droplet bisection. Furthermore, the contribution of powders larger than 2000 nm and smaller than 200 nm to form SMSs is discussed. This work shows that compared to nanosecond lasers, picosecond lasers are also suitable to produce SMSs if the pulse duration is longer than the material electron-phonon coupling period to allow thermal relaxation.
Laser processing for precise fabrication of the THz optics
Zone plates with integrated band-pass filters and binary Fresnel lenses designed for the THz spectral range were fabricated by direct laser ablation in metal films and the silicon substrate. Results on the process performance and quality of the products are reviewed. The focusing performance was measured using the THz source that produces the 580 GHz radiation. The beam was directed to the centre of the fabricated optical elements. Zone plates with integrated band-pass filters have shown the double performance in focusing and spectral selection. The dependence of ablation rate and surface roughness on the laser process parameters was thoroughly investigated on the silicon. The depth of the ablated grooves linearly depends on the number of laser scans number with a particular slope for each scanning speed. The process regime with the 125 mm/s scanning speed provided the most precise control over the ablation depth. The topography measurements of the laser fabricated multilevel phase zone plates (Fresnel lenses) with the 10 mm focal length showed good agreement with the calculated topography. The intensity distribution of the focus spots using the laser fabricated 2, 4 and 8 level binary Fresnel lenses showed better focusing performance when more depth levels were applied in the lens production.
Picosecond laser registration of interference pattern by oxidation of thin Cr films
The laser oxidation of thin metallic films followed by its selective chemical etching is a promising method for the formation of binary metal structures on the glass substrates. It is important to confirm that even a single ultrashort laser pulse irradiation is able to create the protective oxide layer that makes possible to imprint the thermochemical image.
Results of the thermo-chemical treatment of thin chromium films irradiated by picosecond laser pulse utilizing two and four beam interference combined with the chemical etching are presented. The spatial resolution of this method can be high enough due to thermo-chemical sharpening and can be close to the diffraction limit. Micro-Raman spectroscopy was applied for characterization of the chemical composition of the protective oxide layers formed under atmospheric conditions on the surface of thin chromium films.
Picosecond pulsed laser ablation for the surface preparation of epoxy composites
As part of a technical challenge under the Advanced Composites Program, methods for improving pre-bond process control for aerospace composite surface treatments and inspections, in conjunction with Federal Aviation Administration guidelines, are under investigation. The overall goal is to demonstrate high fidelity, rapid and reproducible surface treatment and surface characterization methods to reduce uncertainty associated with the bonding process. The desired outcomes are reliable bonded airframe structure, and reduced timeline to certification. In this work, laser ablation was conducted using a q-switched Nd:YVO4 laser capable of nominal pulse durations of 8 picoseconds (ps). Aerospace structural carbon fiber reinforced composites with an epoxy resin matrix were laser treated, characterized, processed into bonded assemblies and mechanically tested. The characterization of ablated surfaces were conducted using scanning electron microscopy (SEM), water contact angle (WCA) goniometry, micro laser induced breakdown spectroscopy (uLIBS), and electron spin resonance (ESR). The bond performance was assessed using a double cantilever beam (DCB) test with an epoxy adhesive. The surface characteristics and bond performance obtained from picosecond ablated carbon fiber reinforced plastics (CFRPs) are presented herein.
Efficient nucleic acid delivery to murine regulatory T cells by gold nanoparticle conjugates
Immune responses have to be tightly controlled to guarantee maintenance of immunological tolerance and efficient clearance of pathogens and tumorigenic cells without induction of unspecific side effects. CD4+ CD25+ regulatory T cells (Tregs) play an important role in these processes due to their immunosuppressive function. Genetic modification of Tregs would be helpful to understand which molecules and pathways are involved in their function, but currently available methods are limited by time, costs or efficacy. Here, we made use of biofunctionalized gold nanoparticles as non-viral carriers to transport genetic information into murine Tregs. Confocal microscopy and transmission electron microscopy revealed an efficient uptake of the bioconjugates by Tregs. Most importantly, coupling eGFP-siRNA to those particles resulted in a dose and time dependent reduction of up to 50% of eGFP expression in Tregs isolated from Foxp3eGFP reporter mice. Thus, gold particles represent a suitable carrier for efficient import of nucleic acids into murine CD4+ CD25+ Tregs, superior to electroporation.
Recent Advances in Laser Utilization in the Chemical Modification of Graphene Oxide and Its Applications
A dramatic rise in research interest in laser-induced graphene oxide (GO) reduction and modification requires an overview of the most recent works on this subject. Typical methods for the recognition and confirmation of modified graphene and its derivatives, such as Raman, Fourier-transform infra-red (FTIR), X-ray photoelectron (XP), and ultraviolet-visible (UV–vis) spectroscopies, are introduced briefly in this review. A major part of the survey is devoted to the main modification ways and the laser parameters used in the literature. A discussion of possible reduction and modification mechanisms is also presented. Recent applications, especially in the biomedical field such as cell therapy treatment, as well as significant results of GO modification, are discussed in detail. Finally, perspectives for the application of laser-induced GO modifications in passive THz photonics and biomedicine are briefly addressed.
Solvent-surface interactions control the phase structure in laser-generated iron-gold core-shell nanoparticles
This work highlights a strategy for the one-step synthesis of FeAu nanoparticles by the pulsed laser ablation of alloy targets in the presence of different solvents. This method allows particle generation without the use of additional chemicals; hence, solvent-metal interactions could be studied without cross effects from organic surface ligands. A detailed analysis of generated particles via transmission electron microscopy in combination with EDX elemental mapping could conclusively verify that the nature of the used solvent governs the internal phase structure of the formed nanoparticles. In the presence of acetone or methyl methacrylate, a gold shell covering a non-oxidized iron core was formed, whereas in aqueous media, an Au core with an Fe3O4 shell was generated. This core-shell morphology was the predominant species found in >90% of the examined nanoparticles. These findings indicate that fundamental chemical interactions between the nanoparticle surface and the solvent significantly contribute to phase segregation and elemental distribution in FeAu nanoparticles. A consecutive analysis of resulting Fe@Au core-shell nanoparticles revealed outstanding oxidation resistance and fair magnetic and optical properties. In particular, the combination of these features with high stability magnetism and plasmonics may create new opportunities for this hybrid material in imaging applications.