Femtosecond laser systems

Femtosecond lasers
Industrial

Industrial femtosecond lasers

ModelMax repetition ratePulse durationMax pulse energyMax output power
up to 4 MHz< 400 fs – 1 psup to 300 μJup to 50 W
1 MHz< 400 fs – 1 ps1 mJ≥ 30 W
up to 4 MHz< 400 fs – 1 psup to 300 μJ≥ 30 W
10 MHz300 fs – 5 ps3 µJ3 W
ModelMax repetition ratePulse durationMax pulse energyMax output power

Downloads

Publications

Femtosecond laser multiple pulse-induced thermochemical copper precipitation from glyoxylic acid copper complex ink with surfactant

N. P. Ha, T. Ohishi, and M. Mizoshiri, Journal of Physics D: Applied Physics 58 (10), 105302 (2025). DOI: 10.1088/1361-6463/ada2fa.

Formation of through-glass vias (TGVs) in glass substrates using femtosecond laser operating in MHz/GHz burst mode

D. Andriukaitis, V. Stankevič, E. Kažukauskas, and P. Gečys, in Lasers in Manufacturing Conference 2025, (WLT, 2025).

In Transition from Battlefield to Industry, Dry Laser Cooling Makes a Splash

L. Ūkanis, D. Andriukaitis, L. Rimgaila, and J. Burnett, Photonics Spectra 59 (11), 43-48 (2025).

Monoclinic nonlinear metasurfaces for resonant engineering of polarization states

I. Toftul, D. Hariharan, P. Tonkaev, F. Lai, Q. Song, and Y. Kivshar, Nanophotonics 14 (23), 4145 – 4151 (2025). DOI: 10.1515/nanoph-2025-0019.

Polar organization of H&E dyes in histology tissue revealed by polarimetric nonlinear microscopy

M. Maciulis, V. Mazeika, L. Kontenis, D. Tokarz, R. Cisek, D. Bulotiene et al., bioRxiv (2025). DOI: 10.1101/2025.05.19.654795.

Polarization-Dependent Laser-Assisted Cutting of Glass Using a Nondiffractive Beam in the MHz Burst Regime

J. Dudutis, A. Kondratas, and P. Gečys, ACS Photonics 12 (7), 3706-3716 (2025). DOI: 10.1021/acsphotonics.5c00679.

Rayleigh wave induced cavitation bubble structures

H. Reese, U. J. Gutiérrez‑Hernández, P. Pfeiffer, P. A. Quinto‑Su, and C. Ohl, International Journal of Multiphase Flow 184, 105114 (2025). DOI: 10.1016/j.ijmultiphaseflow.2024.105114.

Amplification of Supersonic Microjets by Resonant Inertial Cavitation-Bubble Pair

Y. Fan, A. Bußmann, F. Reuter, H. Bao, S. Adami, J. M. Gordillo et al., Physical Review Letters 132 (10) (2024). DOI: 10.1103/physrevlett.132.104004.

Comparative analysis of microlens array formation in fused silica glass by laser: Femtosecond versus picosecond pulses

L. Zubauskas, E. Markauskas, A. Vyšniauskas, V. Stankevič, and P. Gečys, Journal of Science: Advanced Materials and Devices 9 (4), 100804 (2024). DOI: 10.1016/j.jsamd.2024.100804.

Fingering of a cavitation bubble in a thin gap: Ejection of the reversed boundary layer into the bulk flow

A. Borich, and P. Denissenko, Physics of Fluids 36 (3), 032001 (2024). DOI: 10.1063/5.0184351.

1

2 3 4 5

...

10

High intensity femtosecond laser systems

ModelRepetition ratePulse durationMax pulse energySpecial feature
1 kHzdown to 10 fs20 mJHigh repetition rate tunable wavelength fs OPCPA Systems
100 Hzdown to 10 fs1 JHigh energy fs OPCPA systems
1 kHzdown to 8 fs1 JCustom multi TW few cycle OPCPA systems
ModelRepetition ratePulse durationMax pulse energySpecial feature

Downloads

Publications

High-Repetition-Rate Attosecond Extreme Ultraviolet Beamlines at ELI ALPS for Studying Ultrafast Phenomena

M. Shirozhan, S. Mondal, T. Grósz, B. Nagyillés, B. Farkas, A. Nayak et al., Ultrafast Science 4, 0067 (2024). DOI: 10.34133/ultrafastscience.0067.

53 W average power CEP-stabilized OPCPA system delivering 5.5 TW few cycle pulses at 1 kHz repetition rate

R. Budriūnas, T. Stanislauskas, J. Adamonis, A. Aleknavičius, G. Veitas, D. Gadonas et al., Opt. Express 25 (5), 5797-5806 (2017). DOI: 10.1364/OE.25.005797.

The ELI-ALPS facility: the next generation of attosecond sources

S. Kühn, M. Dumergue, S. Kahaly, S. Mondal, M. Füle, T. Csizmadia et al., Journal of Physics B: Atomic, Molecular and Optical Physics 50 (13), 132002 (2017). DOI: 10.1088/1361-6455/aa6ee8.

Table top TW-class OPCPA system driven by tandem femtosecond Yb:KGW and picosecond Nd:YAG lasers

T. Stanislauskas, R. Budriūnas, R. Antipenkov, A. Zaukevičius, J. Adamonis, A. Michailovas et al., Opt. Express 22 (2), 1865-1870 (2014). DOI: 10.1364/OE.22.001865.

Femtosecond fiber seeders

ModelRepetition ratePulse durationMax pulse energySpecial feature
25 kHz – 50 MHzUp to 30 ps,
compressible down to < 200 fs
1 nJ
100 kHz – 50 MHz> 50 ps,
compressible down to < 250 fs
250 nJ
25 kHz – 50 MHz<140 fs5 nJ
ModelRepetition ratePulse durationMax pulse energySpecial feature

Downloads

Publications

Compact, low-cost, and broadband terahertz time-domain spectrometer

N. Couture, J. Schlosser, A. Ahmed, M. Wahbeh, G. Best, A. Gamouras et al., Appl. Opt. 62 (15), 4097-4101 (2023). DOI: 10.1364/AO.486938.

Terahertz Spectroscopy for Gastrointestinal Cancer Diagnosis

F. Wahaia, I. Kašalynas, G. Valušis, C. D. C. Silva, and P. L. Granja, in Terahertz Spectroscopy, J. Uddin, ed. (IntechOpen, 2017). DOI: 10.5772/66999.

On-chip visible-to-infrared supercontinuum generation with more than 495 THz spectral bandwidth

J. P. Epping, T. Hellwig, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman et al., Opt. Express 23 (15), 19596-19604 (2015). DOI: 10.1364/OE.23.019596.

Content not found