Industrial Femtosecond Lasers

Award winning industrial femtosecond lasers built to work 24/7/365 without interruption. Designed for micromachining applications it employ an innovative cooling system which enables to set new reliability standards among industrial femtosecond lasers. 

Industrial lasers
Summary

Reliability redefined

Award winning industrial ultrafast lasers tailored for micromachining and other material processing applications. Unlike other femtosecond lasers, FemtoLux features Direct Refrigerant Cooling system, which is military-tested (with > 90 000 hours MTBF) and ensures maintenance-free 7/24/365 operation which means substantial savings of cost and time due to the elimination of servicing and downtimes.

Ultrafast industrial laser FemtoLux offers the most flexible pulse management for the market – different GHz burst modes with the same laser source – long GHz burst mode, short GHz burst mode, MHz and GHz burst mode; PoD – pulse on demand – enabling laser to fire a pulse only when required with 20 ns (peak to peak) jitter, enabling precise control over the laser’s output and resulting in higher efficiency, accuracy and quality.

This industrial femtosecond lasers can be optimized to deliver pulse energies for practically all micromachining tasks – versions featuring high pulse energy at KHz repetition rates as well as MHz repetition rates and µJ energy levels for high speed micromachining.

By employing optional module, UV and green outputs can be achieved additionally to process different kind of materials. The whole system (laser head + power supply) features the smallest footprint in the market.

Build to meet the requirements of the most demanding materials processing applications industrial femtosecond laser FemtoLux ensures easy integration and reduces the time and efforts required to integrate this laser into any laser micromachining equipment.

Product comparison table

ModelAvailable output wavelengthsPulse duration 1)Max output power 1)Max repetition rateMax pulse energy 1)
Femtosecond lasers
1030 nm
515 nm
343 nm
400 fs – 1 ps45 W
(typical 50 W)
2 MHz300 μJ
1030 nm
515 nm
343 nm
350 fs – 1 ps27 W
(typical 30 W)
4 MHz100 μJ
or
1 mJ
1030 nm
515 nm
300 fs – 5 ps3 W10 MHz3 µJ
ModelAvailable output wavelengthsPulse duration 1)Max output power 1)Max repetition rateMax pulse energy 1)
  1. At fundamental wavelength.

Products range

Publications

Femtosecond laser multiple pulse-induced thermochemical copper precipitation from glyoxylic acid copper complex ink with surfactant

N. P. Ha, T. Ohishi, and M. Mizoshiri, Journal of Physics D: Applied Physics 58 (10), 105302 (2025). DOI: 10.1088/1361-6463/ada2fa.

In Transition from Battlefield to Industry, Dry Laser Cooling Makes a Splash

L. Ūkanis, D. Andriukaitis, L. Rimgaila, and J. Burnett, Photonics Spectra 59 (11), 43-48 (2025).

Monoclinic nonlinear metasurfaces for resonant engineering of polarization states

I. Toftul, D. Hariharan, P. Tonkaev, F. Lai, Q. Song, and Y. Kivshar, Nanophotonics 14 (23), 4145 – 4151 (2025). DOI: 10.1515/nanoph-2025-0019.

Polar organization of H&E dyes in histology tissue revealed by polarimetric nonlinear microscopy

M. Maciulis, V. Mazeika, L. Kontenis, D. Tokarz, R. Cisek, D. Bulotiene et al., bioRxiv (2025). DOI: 10.1101/2025.05.19.654795.

Polarization-Dependent Laser-Assisted Cutting of Glass Using a Nondiffractive Beam in the MHz Burst Regime

J. Dudutis, A. Kondratas, and P. Gečys, ACS Photonics 12 (7), 3706-3716 (2025). DOI: 10.1021/acsphotonics.5c00679.

Rayleigh wave induced cavitation bubble structures

H. Reese, U. J. Gutiérrez‑Hernández, P. Pfeiffer, P. A. Quinto‑Su, and C. Ohl, International Journal of Multiphase Flow 184, 105114 (2025). DOI: 10.1016/j.ijmultiphaseflow.2024.105114.

Amplification of Supersonic Microjets by Resonant Inertial Cavitation-Bubble Pair

Y. Fan, A. Bußmann, F. Reuter, H. Bao, S. Adami, J. M. Gordillo et al., Physical Review Letters 132 (10) (2024). DOI: 10.1103/physrevlett.132.104004.

Comparative analysis of microlens array formation in fused silica glass by laser: Femtosecond versus picosecond pulses

L. Zubauskas, E. Markauskas, A. Vyšniauskas, V. Stankevič, and P. Gečys, Journal of Science: Advanced Materials and Devices 9 (4), 100804 (2024). DOI: 10.1016/j.jsamd.2024.100804.

Fingering of a cavitation bubble in a thin gap: Ejection of the reversed boundary layer into the bulk flow

A. Borich, and P. Denissenko, Physics of Fluids 36 (3), 032001 (2024). DOI: 10.1063/5.0184351.

High-speed ultrasound imaging of bubbly flows and shear waves in soft matter

J. M. Rosselló, S. Izak Ghasemian, and C. Ohl, Soft Matter 20 (4), 823 – 836 (2024). DOI: 10.1039/d3sm01546g.

1

2 3 4 5

...

10

Content not found