Atlantic

High Power Industrial Picosecond Lasers

High-energy and high-power water-cooled Atlantic series picosecond lasers are designed for a variety of material processing applications in R&D labs.

Download datasheet
Atlantic
Overview

Features

  • At 1064 nm
    Up to 80 W output power, up to 200 μJ pulse energy
  • At 532 nm (optional)
    Up to 40 W output power, up to 100 μJ pulse energy
  • At 355 nm (optional)
    Up to 30 W output power, up to 75 μJ pulse energy
  • Up to 1 MHz repetition rate
  • Short pulse duration 10 ps
  • M²<1.3
  • Versatile laser control and syncronisation capabilities
  • Smart triggering for synchronous operation with polygon scanner and PSO
  • Monolythic, sealed and rugged design
  • Low ownership cost
  • Nanosecond pulse duration mode (optional)

Applications

  • Drilling
  • Cutting
  • Patterning
  • Structuring
  • Ablation
  • Dicing
  • Micromachining
  • LCD, OLED cutting
  • Laser induced forward transfer
  • Sapphire structuring and dicing
  • Ceramics micromachining
  • PCD drilling and tracing
  • Silicon scribing
  • PET, PP, PTFE, Silicone cutting and drilling

Description

High-energy and high-power water-cooled Atlantic series picosecond lasers are designed for a variety of industrial applications.

Suitable for LCD or OLED display cutting and drilling, laser induced forward transfer (LIFT), glass and sapphire processing, micromachining of ultra-hard materials, ablation of metals, cutting and drilling of polymers, silicon scribing, solar cell scribing and many more.

Superior beam quality parameters, maximum available average power (80 W @ IR / 40 W @ VIS / 30 W @ UV), maximum available pulse energy (200 μJ @ IR / 100 μJ @ VIS / 75 μJ @ UV) and maximum pulse repetition rate (up to 1 MHz) are beneficial where high processing quality and high throughput are required.

To tailor laser performance for specific industrial applications, advanced electronics enable external gating (including PSO), synchronization and precise laser triggering as well as instant signal amplitude control.

To maintain reliability and assure long-term stable operation in an industrial environment, optical components are installed in a sealed, robust, precisely machined monolithic aluminum block. Designed for robust, low maintenance operation, Atlantic series lasers offer maximum reliability due to an optimized layout, PC controlled operation, a built-in self-diagnostic system and advanced status reporting.

Typical view of Atlantic 50, 80 laser head with two and three outputs

Typical view of Atlantic 50, 80 laser head with two and three outputs.

Typical view of Atlantic 50, 80 laser head with a single 1064 nm output

Typical view of Atlantic 50, 80 laser head with a single 1064 nm output.

To tailor laser performance for specific industrial applications, advanced electronics enable external gating (including PSO), synchronization and precise laser triggering as well as instant signal amplitude control.

To maintain reliability and assure long-term stable operation in an industrial environment, optical components are installed in a sealed, robust, precisely machined monolithic aluminum block. Designed for robust, low maintenance operation, Atlantic series lasers offer maximum reliability due to an optimized layout, PC controlled operation, a built-in self-diagnostic system and advanced status reporting.

For industrial high-power UV laser applications, high reliability and low ownership cost of UV components is crucial. To meet these requirements, the optical layouts of Atlantic UV models are optimized for longevity and stable operation in the UV range, resulting in a UV optics lifetime of 8,000 hours.

A unique optional feature of Atlantic high-power lasers is that they can work in both picosecond and nanosecond modes. This 2-in-1 laser solution is beneficial for some materials processing (such as glass or ceramics), where both very high accuracy, low processed surface roughness and high throughput are required at low cost.

Specifications

ModelAtlantic 50Atlantic 80
Main Specifications 1)
Central wavelength
Fundamental1064 nm1064 nm
With 2H option532 nm (optional 1064 nm output) 2)532 nm (optional 1064 nm output) 2)
With 3H option355 nm (optional 1064 nm and/or 532 nm outputs) 2)355 nm (optional 1064 nm and/or 532 nm outputs) 2)
Laser pulse repetition rate (PRRL) range 3)300 – 1000 kHz400 – 1000 kHz
Pulse repetition rate after frequency dividerPRR = PRRL / N, N=1, 2, 3, … , 1025PRR = PRRL / N, N=1, 2, 3, … , 1025
Maximal average output power 4)
At 1064 nm50 W80 W
At 532 nm25 W40 W
At 355 nm18 W30 W
Pulse energy at lowest PRRL 4)
At 1064 nm165 µJ200 µJ
At 532 nm85 µJ100 µJ
At 355 nm60 µJ75 µJ
Pulse contrast
At 1064 nm> 300 : 1> 300 : 1
At 532 nm> 500 : 1> 500 : 1
At 355 nm> 1000 : 1> 1000 : 1
Power long term stability over 8 h (Std. dev.) 5)< 1.0 %< 1.0 %
Pulse energy stability (Std. dev.) 6)
At 1064 nm< 1.0 %< 1.0 %
At 532 nm< 2.0 %< 2.0 %
At 355 nm< 2.5 %< 2.5 %
Pulse duration (FWHM) at 1064 nm10 ± 3 ps10 ± 3 ps
Polarizationlinear, vertical 100 : 1linear, vertical 100 : 1
M2< 1.3< 1.3
Beam circularity, far field> 0.85> 0.85
Beam divergence, full angle< 1.5 mRad< 1.5 mRad
Beam pointing stability (pk-to-pk) 7)< 50 µRad< 50 µRad
Beam diameter (1/e2) at 50 cm distance from laser aperture
At 1064 nm1.8 ± 0.3 mm1.8 ± 0.3 mm
At 532 nm1.8 ± 0.3 mm2.2 ± 0.3 mm
At 355 nm1.8 ± 0.3 mm2.0 ± 0.3 mm
Triggering modeinternal / externalinternal / external
Pulse output controlfrequency divider, pulse picker, instant amplitude control, power attenuationfrequency divider, pulse picker, instant amplitude control, power attenuation
Control interfaceskeypad / USB / RS232 / LANkeypad / USB / RS232 / LAN
Physical characteristics
Coolingwaterwater
Laser head size (L×W×H)
Single output 1064 nm396 × 173 × 755 mm396 × 173 × 755 mm
Single output 355 nm396 × 173 × 1000 mm396 × 173 × 1000 mm
3 outputs 1064 / 532 / 355 nm396 × 173 × 926 mm396 × 173 × 926 mm
Power supply unit size (L×W×H)553 × 1019 × 852 mm553 × 1019 × 852 mm
Umbilical length4 m4 m
Operating Requirements
Mains requirements100 – 240 V AC, single phase 47 – 63 Hz100 – 240 V AC, single phase 47 – 63 Hz
Maximal power consumption< 3.1 kW< 3.5 kW
Operating ambient temperature18 – 27 °C18 – 27 °C
Relative humidity10 – 80 % (non-condensing)10 – 80 % (non-condensing)
Air contamination levelISO 9 (room air) or betterISO 9 (room air) or better
Classification
Classification according EN60825-1CLASS 4 laser productCLASS 4 laser product
ModelAtlantic 50Atlantic 80
  1. Due to continuous improvement, all specifications are subject to change without notice. Parameters marked typical are not specifications. They are indications of typical performance and will vary with each unit we manufacture.
  2. Can be ordered either in a single output or in 2 or 3 separate harmonics outputs versions.
  3. When frequency divider is set to transmit every pulse.
  4. See typical power and energy curves for other pulse repetition rates.
  5. At the lowest PRRL after warm-up under constant environmental conditions.
  6. At the lowest PRRL under constant environmental conditions.
  7. Beam pointing stability is evaluated as a movement of the beam centroid in the focal plane of a focusing element.

Publications

Laser-generated nanoparticles from Fe-based metallic glass in water and its amorphization control by pulsed laser processing

S. Liang, M. E. R. Reusmann, K. Loza, S. Zerebecki, L. Zhang, Z. Jia et al., Materials Today Chemistry 30, 101544 (2023). DOI: 10.1016/j.mtchem.2023.101544.

Thermal control of SZ2080 photopolymerization in four-beam interference lithography

Z. Prielaidas, S. Juodkazis, and E. Stankevičius, Physical Chemistry Chemical Physics 22 (9), 5038-5045 (2020). DOI: 10.1039/C9CP05168F.

Glass dicing with elliptical Bessel beam

J. Dudutis, R. Stonys, G. Račiukaitis, and P. Gečys, Optics & Laser Technology 111, 331-337 (2019). DOI: 10.1016/j.optlastec.2018.10.007.

High-efficiency laser fabrication of drag reducing riblet surfaces on pre-heated Teflon

A. Žemaitis, J. Mikšys, M. Gaidys, P. Gečys, and M. Gedvilas, Materials Research Express 6 (6), 065309 (2019). DOI: 10.1088/2053-1591/ab0b12.

Laser-Ablated Silicon in the Frequency Range From 0.1 to 4.7 THz

S. Indrišiunas, E. Svirplys, H. Richter, A. Urbanowicz, G. Račiukaitis, T. Hagelschuer et al., IEEE Transactions on Terahertz Science and Technology 9 (6), 581-586 (2019). DOI: 10.1109/TTHZ.2019.2939554.

Laser-assisted selective copper deposition on commercial PA6 by catalytic electroless plating – Process and activation mechanism

K. Ratautas, M. Andrulevičius, A. Jagminienė, I. Stankevičienė, E. Norkus, and G. Račiukaitis, Applied Surface Science 470, 405-410 (2019). DOI: 10.1016/j.apsusc.2018.11.091.

Mechanism of pillars formation using four-beam interference lithography

E. Stankevičius, E. Daugnoraitė, and G. Račiukaitis, Optics and Lasers in Engineering 116, 41-46 (2019). DOI: 10.1016/j.optlaseng.2018.12.012.

Raising the maximum power density of nanoporous catalyst film-based polymer-electrolyte-membrane fuel cells by laser micro-machining of the gas diffusion layer

J. Iglesia, C. Lang, Y. Chen, S. Chen, and C. Tseng, Journal of Power Sources 436, 226886 (2019). DOI: 10.1016/j.jpowsour.2019.226886.

Rapid high-quality 3D micro-machining by optimised efficient ultrashort laser ablation

A. Žemaitis, M. Gaidys, P. Gečys, G. Račiukaitis, and M. Gedvilas, Optics and Lasers in Engineering 114, 83-89 (2019). DOI: 10.1016/j.optlaseng.2018.11.001.

Thermochemical writing with high spatial resolution on Ti films utilising picosecond laser

V. P. Veiko, R. A. Zakoldaev, E. A. Shakhno, D. A. Sinev, Z. K. Nguyen, A. V. Baranov et al., Opt. Mater. Express 9 (6), 2729-2737 (2019). DOI: 10.1364/OME.9.002729.

1

2 3 4

Content not found