Industrial Femtosecond Lasers

Award winning femtosecond industrial lasers built to work 24/7/365 without interruption. Designed for micromachining applications it employ an innovative cooling system which enables to set new reliability standards among industrial femtosecond lasers. 

Industrial lasers
Summary

Reliability redefined

Award winning industrial ultrafast lasers tailored for micromachining and other material processing applications. Unlike other femtosecond lasers, FemtoLux features Direct Refrigerant Cooling system, which is military-tested (with > 90 000 hours MTBF) and ensures maintenance-free 7/24/365 operation which means substantial savings of cost and time due to the elimination of servicing and downtimes.

Ultrafast industrial laser FemtoLux offers the most flexible pulse management for the market – different GHz burst modes with the same laser source – long GHz burst mode, short GHz burst mode, MHz and GHz burst mode; PoD – pulse on demand – enabling laser to fire a pulse only when required with 20 ns (peak to peak) jitter, enabling precise control over the laser’s output and resulting in higher efficiency, accuracy and quality.

This industrial femtosecond laser can be optimized to deliver pulse energies for practically all micromachining tasks – versions featuring high pulse energy at KHz repetition rates as well as MHz repetition rates and µJ energy levels for high speed micromachining.

By employing optional module, UV and green outputs can be achieved additionally to process different kind of materials. The whole system (laser head + power supply) features the smallest footprint in the market.

Build to meet the requirements of the most demanding materials processing applications industrial femtosecond laser FemtoLux ensures easy integration and reduces the time and efforts required to integrate this laser into any laser micromachining equipment.

Product comparison table

ModelAvailable output wavelengthsPulse duration 1)Max output power 1)Max repetition rateMax pulse energy 1)
Femtosecond lasers
1030 nm
515 nm
343 nm
400 fs – 1 ps45 W
(typical 50 W)
2 MHz300 μJ
1030 nm
515 nm
343 nm
350 fs – 1 ps27 W
(typical 30 W)
4 MHz100 μJ
or
1 mJ
1030 nm
515 nm
300 fs – 5 ps3 W10 MHz3 µJ
ModelAvailable output wavelengthsPulse duration 1)Max output power 1)Max repetition rateMax pulse energy 1)
  1. At fundamental wavelength.

Products range

Publications

Comparative analysis of microlens array formation in fused silica glass by laser: Femtosecond versus picosecond pulses

L. Zubauskas, E. Markauskas, A. Vyšniauskas, V. Stankevič, and P. Gečys, Journal of Science: Advanced Materials and Devices 9 (4), 100804 (2024). DOI: 10.1016/j.jsamd.2024.100804.

The ultrafast burst laser ablation of metals: Speed and quality come together

A. Žemaitis, U. Gudauskytė, S. Steponavičiūtė, P. Gečys, and M. Gedvilas, Optics & Laser Technology 180, 111458 (2024). DOI: 10.1016/j.optlastec.2024.111458.

Ultrashort Pulse Bursts for Surface Laser Polishing

S. Steponavičiūtė, P. Gečys, G. Račiukaitis, M. Gedvilas, and A. Žemaitis, in Optics, Photonics and Lasers OPAL’ 2024 Conference Proceedings, S. Y. Yurish, ed. (IFSA Publishing, 2024), pp. 44.

Acoustic resonance effects and cavitation in SAW aerosol generation

M. Roudini, J. Manuel Rosselló, O. Manor, C. Ohl, and A. Winkler, Ultrasonics Sonochemistry 98, 106530 (2023). DOI: 10.1016/j.ultsonch.2023.106530.

Characterization of pathological stomach tissue using polarization-sensitive second harmonic generation microscopy

H. Jeon, M. Harvey, R. Cisek, E. Bennett, and D. Tokarz, Biomed. Opt. Express 14 (10), 5376-5391 (2023). DOI: 10.1364/BOE.500335.

Clean production and characterization of nanobubbles using laser energy deposition

J. M. Rosselló, and C. Ohl, Ultrasonics Sonochemistry 94, 106321 (2023). DOI: 10.1016/j.ultsonch.2023.106321.

Femtosecond Laser Cutting of 110–550 µm Thickness Borosilicate Glass in Ambient Air and Water

E. Markauskas, L. Zubauskas, G. Račiukaitis, and P. Gečys, Micromachines 14 (1) (2023). DOI: 10.3390/mi14010176.

GaAs ablation with ultrashort laser pulses in ambient air and water environments

E. Markauskas, L. Zubauskas, A. Naujokaitis, B. Čechavičius, M. Talaikis, G. Niaura et al., Journal of Applied Physics 133 (23), 235102 (2023). DOI: 10.1063/5.0152173.

High numerical aperture imaging allows chirality measurement in individual collagen fibrils using polarization second harmonic generation microscopy

M. Harvey, R. Cisek, M. Alizadeh, V. Barzda, L. Kreplak, and D. Tokarz, Nanophotonics 12 (11), 2061-2071 (2023). DOI: doi:10.1515/nanoph-2023-0177.

High throughput wide field second harmonic imaging of giant unilamellar vesicles

M. Eremchev, D. Roesel, P. M. Dansette, A. Michailovas, and S. Roke, Biointerphases 18 (3), 031202 (2023). DOI: 10.1116/6.0002640.

1

2 3 4 5

Content not found