PL2210 series

Diode Pumped Picosecond kHz Pulsed Nd:YAG Lasers

PL2210 series diode-pumped, air-cooled, mode-locked Nd:YAG lasers provide picosecond pulses at a kilohertz pulse repetition rate.

Download datasheet
PL2210
Overview

Features

  • High pulse energy at kHz rates
  • Diode pumped solid state design
  • Air cooled – external water supply is not required (for PL2210A, PL2210B only)
  • Turn-key operation
  • Low maintenance costs
  • Optional streak camera triggering pulse with <10 ps rms jitter
  • Remote control pad
  • PC control
  • Optional temperature stabilized second, third and fourth harmonic generators

Applications

  • Time resolved fluorescence (including streak camera measurements), pump-probe spectroscopy
  • OPG/OPA/OPO pumping
  • Remote Laser Sensing
  • Other spectroscopic and nonlinear optics applications

Description

PL2210 series diode-pumped, air-cooled, mode-locked Nd:YAG lasers provide picosecond pulses at a kilohertz pulse repetition rate.

Short pulse duration, excellent pulse-to-pulse stability, superior beam quality makes PL2210 series diode pumped picosecond lasers well suited for many applications, including material processing, time-resolved spectroscopy, optical parametric generator pumping, and other tasks.

Flexible design

PL2210 series lasers offer a number of optional items that extend the capabilities of the laser. A pulse picker option allows control of the pulse repetition rate of the laser and operation in single-shot mode.

A pulse picker option allows control of the pulse repetition rate of the laser and operation in single-shot mode. The repetition rate and timing of pulses can be locked to an external RF source (with –PLL option) or other ultrafast laser system (with –FS option). The laser provides a triggering pulse for synchronization of the customer‘s equipment. A low jitter SYNC OUT pulse has a lead up to 500 ns that can be adjusted in ~0.25 ns steps from a PC. Up to 400 μs lead of triggering pulse is available as a PRETRIG feature that is designed to provide precise, very low jitter trigger pulses for a streak camera.

Built-in harmonic generators

Motorised switching of wavelength for PL2210A and PL2210B. Non-linear crystals mounted in temperature stabilized heaters are used for second, third and fourth high spectral purity harmonic generation.

Simple and convenient laser control

For customer convenience the laser can be operated from master device or personal computer through USB (VCP, ASCII commands), RS232 (ASCII commands), LAN (REST API) or RS232 (ASCII commands), LAN (REST API) depending on the system configuration or from remote control pad with backlit display that is easy to read even while wearing laser safety glasses.

Communication interfaceDescription
USBvirtual serial port, ASCII commands
RS232ASCII commands
LANREST API
WLANREST API

Available models

Model 1)Features
PL2210AUp to 0.9 mJ, 29 ps pulses at an up to 1 kHz repetition rate
PL2210BUp to 2.5 mJ, 29 ps pulses at an up to 1 kHz repetition rate
PL2211AUp to 5 mJ energy at a 1 kHz repetition rate at 29 ps pulses
  1. Custom-built models with higher pulse energy are available on request.

Specifications

ModelPL2210APL2210BPL2211A
Main specifications 1)
Output energy
at 1064 nm0.9 mJ2.5 mJ5 mJ
at 532 nm 2)0.45 mJ1.3 mJ2.5 mJ
at 355 nm 3)0.35 mJ0.8 mJ1.6 mJ
at 266 nm 4)0.1 mJ0.25 mJ0.5 mJ
Pulse energy stability (StdDev) 5)
at 1064 nm0.5 %0.5 %0.5 %
at 532 nm0.8 %0.8 %0.8 %
at 355 nm1.0 %1.0 %1.0 %
at 266 nm2.0 %2.0 %2.0 %
Pulse duration (FWHM) 6)29 ± 5 ps29 ± 5 ps29 ± 5 ps
Pulse repetition rate1 kHz1 kHz1 kHz
Triggering modeinternal/externalinternal/externalinternal/external
Typical TRIG1 OUT pulse delay 8)-500 … 50 ns-500 … 50 ns-500 … 50 ns
TRIG1 OUT pulse jitter< 0.1 ns rms< 0.1 ns rms< 0.1 ns rms
Spatial mode 9)Close to GaussianClose to GaussianClose to Gaussian
Beam divergence 10)< 1 mrad< 1 mrad< 1 mrad
Beam diameter 11)1.7 mm~ 3 mm~ 3 mm
Beam pointing stability (RMS) 12)< 30 μrad< 30 μrad< 30 μrad
Pre-pulse contrast> 200 : 1> 200 : 1> 200 : 1
Polarizationlinear, > 100 : 1linear, > 100 : 1linear, > 100 : 1
Physical characteristics
Laser head size (W × L × H) 13)500 × 1031 × 249 ±3 mm500 × 1031 × 249 ±3 mm500 × 1031 × 249 ±3 mm
Power supply size (W × L × H)365 × 392 × 290 mm450 × 375 × 130 ±3 mm550 × 600 × 550 ± 3 mm
(19″ standard, MR-9)
Operating requirements
Water servicenot required, air coolednot required, air cooledstand-alone chiller
Room temperature22 ± 2 °C22 ± 2 °C22 ± 2 °C
Relative humidity20 – 80 % (noncondensing)20 – 80 % (noncondensing)20 – 80 % (noncondensing)
Power requirements100 – 240 V AC, single phase 50/60 Hz100 – 240 V AC, single phase 50/60 Hz100 – 240 V AC, single phase 50/60 Hz
Power consumption 14)< 1 kW< 1 kW< 1.5 kW
ModelPL2210APL2210BPL2211A
  1. Due to continuous improvement, all specifications are subject to change without notice. Parameters marked typical are not specifications. They are indications of typical performance and will vary with each unit we manufacture. Unless stated otherwise, all specifications are measured at 1064 nm and for basic system without options.
  2. For PL2210 series laser with –SH, -SH/TH, -SH/FH or -SH/TH/FH option. Outputs are not simultaneous.
  3. For PL2210 series laser with –TH, -SH/TH or -SH/TH/FH option. Outputs are not simultaneous.
  4. For PL2210 series laser with -SH/FH or -SH/TH/FH option. Outputs are not simultaneous.
  5. Averaged from pulses, emitted during 30 sec time interval.
  6. Optional 80 or 22 ps ± 10% duration. Pulse energy specifications may differ from indicated here.
  7. With respect to optical pulse. <10 ps rms jitter is provided optionally with PRETRIG feature.
  8. TRIG1 OUT lead or delay can be adjusted with 0.25 ns steps in specified range.
  9. Near field Gaussian fit is >90%.
  10. Average of X- and Y-plane full angle divergence values measured at the 1/e2 level at 1064 nm.
  11. Beam diameter is measured at 1064 nm at the 1/e2 point.
  12. Beam pointing stability is evaluated from fluctuations of beam centroid position in the far field.
  13. 456×1233×249 mm (W×L×H) laser head size might be required for some optional configurations.
  14. At 1 kHz pulse repetition rate.

Note: Laser must be connected to the mains electricity all the time. If there will be no mains electricity for longer that 1 hour then laser (system) needs warm up for a few hours before switching on.

Ordering information of PL2210 lasers

Ordering information of PL2210 lasers.

Options

OptionFeatures
-PRETRIGProvides low jitter pulse for streak camera triggering with lead/delay in -400…600 μs range and <10 ps rms jitter.
-P80Provides 80 ps ± 10 % output pulse duration. Inquire for pulse energy specifications.
-P20Provides 20 ps ± 10 % output pulse duration. Inquire for pulse energy specifications.
-PCAllows reduction of the pulse repetition rate of the PL2210 series laser by integer numbers. Single shot mode is also possible. In addition, the –PC option reduces the low-intensity quasi-CW background that is present at laser output at 1064 nm wavelength. Please note that the output of fundamental wavelength and harmonic will be reduced by approx. 20% with installation of the –PC option.

Publications

Near infrared light induced plasmonic hot hole transfer at a nano-heterointerface

Z. Lian, M. Sakamoto, H. Matsunaga, J. J. M. Vequizo, A. Yamakata, M. Haruta et al., Nature communications 9 (1), 2314 (2018). DOI: 10.1038/s41467-018-04630-w.

Silk protein nanofibers for highly efficient, eco-friendly, optically translucent, and multifunctional air filters

K. Min, S. Kim, and S. Kim, Scientific reports 8 (1), 9598 (2018). DOI: 10.1038/s41598-018-27917-w.

Ultrafast z-scanning for high-efficiency laser micro-machining

T. Chen, R. Fardel, and C. B. Arnold, Light: Science & Applications 4 (7), 17181 (2018). DOI: 10.1038/lsa.2017.181.

Picosecond laser registration of interference pattern by oxidation of thin Cr films

V. Veiko, M. Yarchuk, R. Zakoldaev, M. Gedvilas, G. Račiukaitis, M. Kuzivanov et al., Applied Surface Science 404, 63-66 (2017). DOI: 10.1016/j.apsusc.2017.01.194.

Quantitative picosecond laser-induced fluorescence measurements of nitric oxide in flames

C. Brackmann, J. Bood, J. D. Nauclér, A. A. Konnov, and M. Aldén, Proceedings of the Combustion Institute 36 (3), 4533-4540 (2017). DOI: 10.1016/j.proci.2016.07.012.

Detection of disease markers in human breath with laser absorption spectroscopy

T. Stacewicz, Z. Bielecki, J. Wojtas, P. Magryta, J. Mikolajczyk, and D. Szabra, Opto-Electronics Review 24 (2), 82-94 (2016). DOI: doi:10.1515/oere-2016-0011.

Mid-infrared, super-flat, supercontinuum generation covering the 2–5 μm spectral band using a fluoroindate fibre pumped with picosecond pulses

M. Michalska, J. Mikolajczyk, J. Wojtas, and J. Swiderski, Scientific Reports , 39138 (2016). DOI: 10.1038/srep39138.

Content not found