FemtoLux 3

Microjoule Class Femtosecond Industrial Lasers

FemtoLux 3 is a modern femtosecond fiber laser aimed for both R&D use and industrial integration. It features 3 W output power and allows optimization of laser parameters for the desired application like marking and volume structuring of transparent materials, photopolymerization, biological imaging, nonlinear microscopy and many others.

Download datasheet
FemtoLux 3
Overview

Features

  • At 1030 nm
    3 W typical output power
    up to 3 μJ/pulse and 10 μJ/burst
  • At 515 nm
    1.2 W typical output power
    up to 1.2 μJ/pulse and 5 μJ/burst
  • < 300 fs … 5 ps tunable pulse duration
  • M² < 1.2
  • Versatile laser control and syncronisation capabilities
  • Up to 10 MHz pulse repetition rate
  • Smart triggering for synchronous operation with polygon scanner and PSO
  • Instant amplitude control
  • Passive air cooling of the laser head
  • 24/7 operation

Applications

  • Inner volume marking of transparent materials
  • Marking and structuring
  • Micromachining of brittle materials
  • Photopolymerization
  • Ophthalmologic surgery
  • Biological Imaging
  • Pumping of femtosecond OPO/OPA
  • Microscopy

Modern femtosecond fiber laser

FemtoLux 3 is a modern femtosecond fiber laser aimed for both R&D use and industrial integration.

Tunable pulse duration in a range of 300 fs – 5 ps, adjustable pulse repetition rate up to 10 MHz and adjustable pulse energy up to 3 μJ allows optimization of laser parameters for the desired application. These include marking and volume structuring of transparent materials, photopolymerization, biological imaging, nonlinear microscopy and many others. To expand the scope of applications even further this laser can be equipped with a second harmonics module.

With burst mode enabled, FemtoLux 3 can generate bursts of pulses with energy above 10 μJ which can significantly improve the efficiency of processes.

Having a rigid, compact, passive air-cooled laser head FemtoLux 3 can be integrated with different equipment, be it laser equipment for material micro-processing, microscopy or any other research equipment.

FemtoLux 3 laser with power supply and control unit.

FemtoLux 3 laser with power supply and control unit.

Specifications

ModelFemtoLux 3
Main Specifications 1)
Central wavelength
Fundamental1030 nm
With second harmonic option515 nm
Minimal pulse duration (FWHM) at 1030 nm< 300 fs (typical ~230 fs)
Pulse duration tuning range300 fs – 5 ps
Maximal average output power 2)
At 1030 nm> 3 W
At 515 nm> 1.2 W
Power long term stability (Std. dev.) 3)≤ 0.5 %
Maximal pulse energy 2)
At 1030 nm> 3 µJ
At 515 nm> 1.2 µJ
Pulse energy stability (Std. dev.) 4)< 2 %
Pulse repetition rate (PRR) 5)1 – 10 MHz
Pulse repetition frequency (PRF) after frequency dividerPRF = PRR / N, N=1, 2, 3, … , 65000; single shot
External pulse gatingvia TTL input
Burst mode 6)1 – 10 pulses
Max burst energy
At 1030 nm> 10 µJ
At 515 nm> 5 µJ
Burst shape controlvia analog input
Power attenuation0 – 100 % from remote control application or via analog input
Polarization orientationlinear, vertical
Polarization extinction ratio> 1000:1
M2< 1.2
Beam divergence (full angle)< 1.0 mrad
Beam ellipticity (far field)> 0.85
Beam pointing stability (pk-to-pk) 7)< 30 µrad
Beam diameter (1/e2) at 20 cm distance from laser aperture
At 1030 nm2.0 ± 0.3 mm
At 515 nm1.0 ± 0.2 mm
Physical characteristics
Cooling of the laser headair, passive
Laser head size (L×W×H)
At 1030 nm459.5 × 362 × 111 mm
At 515 nm615.3 × 362 × 139 mm
Power supply unit size (L×W×H)
Stand-alone496 × 483 × 184 mm
19″ rack mountable548 × 483 × 184 mm
Umbilical length5 m
Operating Requirements
Mains requirements100 – 240 V AC, single phase 47 – 63 Hz
Maximal power consumption< 500 W
Operating ambient temperature15 – 30 °C
Relative humidity10 – 80 % (non-condensing)
Air contamination levelISO 9 (room air) or better
Classification
Classification according EN60825-1CLASS 4 laser product
ModelFemtoLux 3
  1. Due to continuous improvement, all specifications are subject to change without notice. Parameters marked typical are not specifications. They are indications of typical performance and will vary with each unit we manufacture.
  2. See typical power and energy curves for other pulse repetition rates at Performance section.
  3. At 1 MHz PRR during 24 h of operation after warm-up under constant environmental conditions.
  4. At 1 MHz PRR under constant environmental conditions.
  5. When pulse picker is set to transmit every pulse.
  6. Pulse separation inside the burst is about 20 ns.
  7. Beam pointing stability is evaluated as a movement of the beam centroid in the focal plane of a focusing element.

Publications

Femtosecond laser multiple pulse-induced thermochemical copper precipitation from glyoxylic acid copper complex ink with surfactant

N. P. Ha, T. Ohishi, and M. Mizoshiri, Journal of Physics D: Applied Physics 58 (10), 105302 (2025). DOI: 10.1088/1361-6463/ada2fa.

Monoclinic nonlinear metasurfaces for resonant engineering of polarization states

I. Toftul, D. Hariharan, P. Tonkaev, F. Lai, Q. Song, and Y. Kivshar, Nanophotonics 14 (23), 4145 – 4151 (2025). DOI: 10.1515/nanoph-2025-0019.

Polar organization of H&E dyes in histology tissue revealed by polarimetric nonlinear microscopy

M. Maciulis, V. Mazeika, L. Kontenis, D. Tokarz, R. Cisek, D. Bulotiene et al., bioRxiv (2025). DOI: 10.1101/2025.05.19.654795.

Rayleigh wave induced cavitation bubble structures

H. Reese, U. J. Gutiérrez‑Hernández, P. Pfeiffer, P. A. Quinto‑Su, and C. Ohl, International Journal of Multiphase Flow 184, 105114 (2025). DOI: 10.1016/j.ijmultiphaseflow.2024.105114.

Amplification of Supersonic Microjets by Resonant Inertial Cavitation-Bubble Pair

Y. Fan, A. Bußmann, F. Reuter, H. Bao, S. Adami, J. M. Gordillo et al., Physical Review Letters 132 (10) (2024). DOI: 10.1103/physrevlett.132.104004.

Fingering of a cavitation bubble in a thin gap: Ejection of the reversed boundary layer into the bulk flow

A. Borich, and P. Denissenko, Physics of Fluids 36 (3), 032001 (2024). DOI: 10.1063/5.0184351.

High-speed ultrasound imaging of bubbly flows and shear waves in soft matter

J. M. Rosselló, S. Izak Ghasemian, and C. Ohl, Soft Matter 20 (4), 823 – 836 (2024). DOI: 10.1039/d3sm01546g.

Robust cavitation-based pumping into a capillary

Z. Heidary, Y. Fan, A. Mojra, and C. D. Ohl, Physics of Fluids 36 (12), 123335 (2024). DOI: 10.1063/5.0238826.

Acoustic resonance effects and cavitation in SAW aerosol generation

M. Roudini, J. Manuel Rosselló, O. Manor, C. Ohl, and A. Winkler, Ultrasonics Sonochemistry 98, 106530 (2023). DOI: 10.1016/j.ultsonch.2023.106530.

Bulk material influence on the aggressiveness of cavitation – Questioning the microjet impact influence and suggesting a possible way to erosion mitigation

M. Dular, and C. D. Ohl, Wear 530-531, 205061 (2023). DOI: 10.1016/j.wear.2023.205061.

1

2 3 4 5

Content not found