FemtoLux 3

Microjoule Class Femtosecond Industrial Lasers
  • Up to 3 W at 1030 nm, 1.2 W at 515 nm
  • Up to 3 μJ/pulse and 10 μJ/burst
  • 300 fs – 5 ps tunable pulse duration
  • Single shot – 10 MHz pulse repetition rates
  • Burst shape active control
  • Up to 3 W at 1030 nm, 1.2 W at 515 nm
  • Up to 3 μJ/pulse and 10 μJ/burst
  • 300 fs – 5 ps tunable pulse duration
  • Single shot – 10 MHz pulse repetition rates
  • Burst shape active control

Features & Applications


  • Output power 3 W at 1030 nm, 1.2 W at 515 nm
  • Up to 3 μJ/pulse and 10 μJ/burst (at 1030 nm)
  • Up to 1.2 µJ/pulse and 5 µJ/burst (at 515 nm)
  • <300 fs … 5 ps tunable pulse duration
  • M² < 1.2
  • Versatile laser control and syncronisation capabilities
  • Up to 10 MHz pulse repetition rate
  • Smart triggering for synchronous operation with polygon scanner and PSO
  • Instant amplitude control
  • Passive air cooling of the laser head
  • 24/7 operation


  • Inner volume marking of transparent materials
  • Marking and structuring
  • Micromachining of brittle materials
  • Photopolymerization
  • Ophthalmologic surgery
  • Biological Imaging
  • Pumping of femtosecond OPO/OPA
  • Microscopy


FemtoLux 3 is a modern femtosecond fiber laser aimed for both R&D use and industrial integration. Tunable pulse duration in a range of 300 fs – 5 ps, adjustable pulse repetition rate up to 10 MHz and adjustable pulse energy up to 3 μJ allows optimization of laser parameters for the desired application. These include marking and volume structuring of transparent materials, photopolymerization, biological imaging, nonlinear microscopy and many others. To expand the scope of applications even further this laser can be equipped with a second harmonics module.

With burst mode enabled, FemtoLux 3 can generate bursts of pulses with energy above 10 μJ with instant burst shape control which can significantly improve the efficiency of some processes.

Having a rigid, compact, passive air-cooled laser head and the possibility to control the laser from a wireless tablet, FemtoLux 3 can be integrated with different equipment, be it laser equipment for material micro-processing, microscopy or any other research equipment.


ModelFemtoLux 3
Central wavelength
    Fundamental1030 nm
    With second harmonic option515 nm
Minimal pulse duration (FWHM) at 1030 nm< 300 fs (typical ~230 fs)
Pulse duration tuning range300 fs – 5 ps
Maximal average output power 2)
    at 1030 nm> 3 W
    at 515 nm> 1.2 W
Power long term stability (Std. dev) 3)≤ 0.5 %
Maximal pulse energy 2)
    at 1030 nm> 3 μJ
    at 515 nm> 1.2 μJ
Pulse energy stability (Std. dev) 4) < 2 %
Laser pulse repetition rate (PRRL ) range 5)1 – 10 MHz
Pulse repetition rate after pulse pickerPRR = PRRL / N, N=1, 2, 3, … , min 10 kHz
External pulse gatingvia TTL input
Burst mode 6)1 – 10 pulses
Max burst energy
    at 1030 nm> 10 μJ
    at 515 nm> 5 μJ
Burst shape controlvia analog input
Power attenuation0 – 100 % from remote control application or via analog input
Polarization orientationlinear, vertical
Polarization extinction ratio> 1000 : 1
M2< 1.2
Beam divergence (full angle)<1.0 mrad
Beam circularity (far field)> 0.85
Beam pointing stability (pk-to-pk) 7)< 30 µrad
Beam diameter (1/e2) at 20 cm distance from laser aperture
    at 1030 nm2.0 ± 0.3 mm
    at 515 nm1.0 ± 0.2 mm
Mains requirements100 – 240 V AC, single phase 47 – 63 Hz
Maximal power consumption< 500 W
Operating ambient temperature15 – 30 °C
Relative humidity10 – 80 % (non-condensing)
Air contamination levelISO 9 (room air) or better
Cooling of the laser headair, passive
Laser head size (L×W×H)
    at 1030 nm464 × 363 × 129 mm
    at 515 nm620 × 363 × 129 mm
Power supply unit size (L×W×H)449 × 436 × 140 mm (stand-alone)
or 483 × 436 × 140 mm (19" rack mountable)
Umbilical length5 m
Classification according EN60825-1CLASS 4 laser product
  1. Due to continuous improvement, all specifications are subject to change without notice. Parameters marked typical are not specifications. They are indications of typical performance and will vary with each unit we manufacture.
  2. See typical power and energy curves for other pulse repetition rates.
  3. At 1 MHz PRRL during 24 h of operation after warm-up under constant environmental conditions.
  4. At 1 MHz PRRL under constant environmental conditions.
  5. When pulse picker is set to transmit every pulse.
  6. Pulse separation inside the burst is about 20 ns.
  7. Beam pointing stability is evaluated as a movement of the beam centroid in the focal plane of a focusing element.




Clean production and characterization of nanobubbles using laser energy deposition

J. M. Rosselló, and C. Ohl, Ultrasonics Sonochemistry 94, 106321 (2023).

Observation of Enhanced Generation of a Fifth Harmonic from Halide Perovskite Nonlocal Metasurfaces

P. Tonkaev, K. Koshelev, M. A. Masharin, S. V. Makarov, S. S. Kruk, and Y. Kivshar, ACS Photonics 5 (10), 1367-1375 (2023).

Investigation into the structure of crystalline maltodextrin particles by second harmonic generation microscopy

E. Bennett, M. Harvey, R. Cisek, and D. Tokarz, Biomed. Opt. Express 3 (14), 1027-1040 (2023).

High numerical aperture imaging allows chirality measurement in individual collagen fibrils using polarization second harmonic generation microscopy

M. Harvey, R. Cisek, M. Alizadeh, V. Barzda, L. Kreplak, and D. Tokarz, Nanophotonics 11 (12), 2061-2071 (2023).

Passive transport of Ca2+ ions through lipid bilayers imaged by widefield second harmonic microscopy

M. Eremchev, D. Roesel, C. S. Poojari, A. Roux, J. S. Hub, and S. Roke, Biophysical Journal 4 (122), 624-631 (2023).

High-harmonic generation from a subwavelength dielectric resonator

A. Zalogina, L. Carletti, A. Rudenko, J. V. Moloney, A. Tripathi, H. Lee et al., Science Advances 17 (9), eadg2655 (2023).

Acoustic resonance effects and cavitation in SAW aerosol generation

M. Roudini, J. Manuel Rosselló, O. Manor, C. Ohl, and A. Winkler, Ultrasonics Sonochemistry 98, 106530 (2023).

High throughput wide field second harmonic imaging of giant unilamellar vesicles

M. Eremchev, D. Roesel, P. M. Dansette, A. Michailovas, and S. Roke, Biointerphases 3 (18), 031202 (2023).

Spectral Tuning of High‐Harmonic Generation with Resonance‐Gradient Metasurfaces

P. Jangid, F. U. Richter, M. L. Tseng, I. Sinev, S. Kruk, H. Altug et al., Advanced Materials (2023).

Characterization of pathological stomach tissue using polarization-sensitive second harmonic generation microscopy

H. Jeon, M. Harvey, R. Cisek, E. Bennett, and D. Tokarz, Biomed. Opt. Express 10 (14), 5376-5391 (2023).

High-Harmonic Generation from Resonant Dielectric Metasurfaces Empowered by Bound States in the Continuum

G. Zograf, K. Koshelev, A. Zalogina, V. Korolev, R. Hollinger, D. Choi et al., ACS Photonics 2 (9), 567-574 (2022).

Thermally Assisted Heterogeneous Cavitation through Gas Supersaturation

P. Pfeiffer, J. Eisener, H. Reese, M. Li, X. Ma, C. Sun et al., Phys. Rev. Lett. 128, 194501 (2022).

Second harmonic generation microscopy of otoconia

K. Brittain, M. Harvey, R. Cisek, S. Pillai, S. D. Christie, and D. Tokarz, Biomed. Opt. Express 6 (13), 3593-3600 (2022).

Asymmetric parametric generation of images with nonlinear dielectric metasurfaces

S. S. Kruk, L. Wang, B. Sain, Z. Dong, J. Yang, T. Zentgraf et al., Nature Photonics 16, 561–565 (2022).

Cavitation erosion by shockwave self-focusing of a single bubble

F. Reuter, C. Deiter, and C. Ohl, Ultrasonics Sonochemistry 90, 106131 (2022).

Characterization of cavitation under ultrasonic horn tip – Proposition of an acoustic cavitation parameter

G. Kozmus, J. Zevnik, M. Hočevar, M. Dular, and M. Petkovšek, Ultrasonics Sonochemistry 89, 106159 (2022).

Bullet jet as a tool for soft matter piercing and needle-free liquid injection

J. M. Rosselló, and C. Ohl, Biomed. Opt. Express 10 (13), 5202-5211 (2022).

Heterogeneous cavitation from atomically smooth liquid-liquid interfaces

P. Pfeiffer, M. Shahrooz, M. Tortora, C. M. Casciola, R. Holman, R. Salomir et al., Zenodo (2022).

Dynamics of pulsed laser-induced cavities on a liquid–gas interface: from a conical splash to a ‘bullet’ jet

J. M. Rosselló, H. Reese, and C. Ohl, Journal of Fluid Mechanics 939, A35 (2022).

The Rayleigh prolongation factor at small bubble to wall stand-off distances

F. Reuter, Q. Zeng, and C. Ohl, Journal of Fluid Mechanics 944, A11 (2022).

Supersonic needle-jet generation with single cavitation bubbles

F. Reuter, and C. Ohl, Applied Physics Letters 13 (118), 134103 (2021).

Nonlinear Imaging of Nanoscale Topological Corner States

S. S. Kruk, W. Gao, D. Choi, T. Zentgraf, S. Zhang, and Y. Kivshar, Nano Letters 11 (21), 4592-4597 (2021).

Kelvin-Helmholtz instability governs the cavitation cloud shedding in Venturi microchannel

D. Podbevšek, M. Petkovšek, C. D. Ohl, and M. Dular, International Journal of Multiphase Flow 142, 103700 (2021).

Investigation of materials for supercontinuum generation for subsequent nonlinear parametrical and Raman amplification at 1 MHz repetition rate

K. Madeikis, P. Dansette, T. Bartulevičius, L. Veselis, R. Jutas, M. Eremchev et al., Optics & Laser Technology 143, 107373 (2021).

On-Demand Bulk Nanobubble Generation through Pulsed Laser Illumination

J. M. Rosselló, and C. Ohl, Phys. Rev. Lett. 127, 044502 (2021).

Ultrahigh sensitive transient absorption spectrometer

H. Li, G. Hu, B. Li, W. Zeng, J. Zhang, X. Wang et al., Review of Scientific Instruments 5 (92), 053002 (2021).

FemtoLux 3 laser for the rapid wide-field second harmonic generation microscopy

D. Rutkauskas, and A. Dementjev, Ekspla Application notes AN2001IL01 (2020).

Subwavelength dielectric resonators for nonlinear nanophotonics

K. Koshelev, S. Kruk, E. Melik‑Gaykazyan, J. Choi, A. Bogdanov, H. Park et al., Science 6475 (367), 288-292 (2020).

Room-temperature lasing from nanophotonic topological cavities

D. Smirnova, A. Tripathi, S. Kruk, M. Hwang, H. Kim, H. Park et al., Light: Science & Applications 9, 127 (2020).

Buckling and Torsional Instabilities of a Nanoscale Biological Rope Bound to an Elastic Substrate

C. Peacock, E. Lee, T. Beral, R. Cisek, D. Tokarz, and L. Kreplak, ACS Nano 10 (14), 12877-12884 (2020).

Cavitation Inception from Transverse Waves in a Thin Liquid Gap

J. Rapet, P. A. Quinto‑Su, and C. Ohl, Phys. Rev. Appl. 14, 024041 (2020).

Third-order nonlinear optical properties of phycobiliproteins from cyanobacteria and red algae

K. Purvis, K. Brittain, A. Joseph, R. Cisek, and D. Tokarz, Chemical Physics Letters 731, 136599 (2019).

Send request about FemtoLux 3