High intensity systems

For scientist who needs unique instrument for research, we provide parameter tailored high intensity laser systems that enable customer to perform complex experiments.

High intensity systems
Summary

Unique Laser Systems for Extreme Applications

Today laser intensities reached levels where relativistic effects dominate in laser-matter interaction. New applications of high pulse energy lasers emerge in various disciplines ranging from fundamental physics to materials research and life sciences. Ekspla presents line of femtosecond, picosecond and nanosecond high pulse energy lasers and amplifiers.

For scientist who needs unique instrument for research, we provide parameter tailored laser systems that enable customer to perform complex experiments. In-house design and manufacturing ensures operative design, manufacturing and customization of new products.

Our broad knowledge in high energy laser physics, non-linear materials and more that 30 years of experience in laser design enables us to offer unique solutions for high intensity laser systems.

Our high intensity lasers feature flash lamp pump for ultra-high pulse energy or diode pump for high average power. Innovative solutions for pulse shaping, precise synchronization between different laser sources enable to fit these systems to numerous experiments of modern fundamental science.

Product comparison table

ModelPulse durationPulse energy, up toRepetition rate, up toSpecial feature
Femtosecond laser systems
down to 10 fs14 mJ1 kHzHigh repetition rate tunable wavelength
fs OPCPA Systems
down to 10 fs1 J100 HzHigh Energy fs OPCPA Systems
down to 8 fs120 mJ1 kHzCustom multi TW Few cycle OPCPA systems
Picosecond laser systems
20 – 300 ps2.2 J10 HzHigh energy flash lamp pumped ps amplifiers
20 – 300 ps150 mJ2  kHzHigh power DPSS ps amplifiers
1 – 300 ps2.2 J
per channel
10 HzCustom multi-channel, burst mode and 1 ps Ytterbium amplifier systems
Nanosecond laser systems
2  – 25 ns10 J10 HzHigh energy Single Longitudinal Mode (SLM) Nd:YAG lasers
5 ± 1 ns10 J10 HzHigh energy Multi-Mode Nd:YAG lasers
2 – 500 ns5 J1 kHzHigh power DPSS ns amplifier systems
0.15 – 20 ns10 J10 HzHigh energy systems with temporal pulse shaping (AWG)
ModelPulse durationPulse energy, up toRepetition rate, up toSpecial feature

Femtosecond laser systems

Picosecond laser systems

Nanosecond laser systems

Publications

High-Repetition-Rate Attosecond Extreme Ultraviolet Beamlines at ELI ALPS for Studying Ultrafast Phenomena

M. Shirozhan, S. Mondal, T. Grósz, B. Nagyillés, B. Farkas, A. Nayak et al., Ultrafast Science 4, 0067 (2024). DOI: 10.34133/ultrafastscience.0067.

Characterization and calibration of the Thomson scattering diagnostic suite for the C-2W field-reversed configuration experiment

A. Ottaviano, T. M. Schindler, K. Zhai, E. Parke, E. Granstedt, M. C. Thompson et al., Review of Scientific Instruments 89 (10), 10C120 (2018). DOI: 10.1063/1.5037101.

Conversion efficiency of a laser-plasma source based on a Xe jet in the vicinity of a wavelength of 11 nm

N. I. Chkhalo, S. A. Garakhin, A. Y. Lopatin, A. N. Nechay, A. E. Pestov, V. N. Polkovnikov et al., AIP Advances 8 (10), 105003 (2018). DOI: 10.1063/1.5048288.

Spectral pulse shaping of a 5 Hz, multi-joule, broadband optical parametric chirped pulse amplification frontend for a 10 PW laser system

F. Batysta, R. Antipenkov, T. Borger, A. Kissinger, J. T. Green, R. Kananavičius et al., Opt. Lett. 43 (16), 3866-3869 (2018). DOI: 10.1364/OL.43.003866.

Thomson scattering systems on C-2W field-reversed configuration plasma experiment

K. Zhai, T. Schindler, A. Ottaviano, H. Zhang, D. Fallah, J. Wells et al., Review of Scientific Instruments 89 (10), 10C118 (2018). DOI: 10.1063/1.5037327.

53 W average power CEP-stabilized OPCPA system delivering 5.5 TW few cycle pulses at 1 kHz repetition rate

R. Budriūnas, T. Stanislauskas, J. Adamonis, A. Aleknavičius, G. Veitas, D. Gadonas et al., Opt. Express 25 (5), 5797-5806 (2017). DOI: 10.1364/OE.25.005797.

Development and characterization of a laser-plasma soft X-ray source for contact microscopy

M. G. Ayele, P. W. Wachulak, J. Czwartos, D. Adjei, A. Bartnik,  Wegrzynski et al., Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 411, 35-43 (2017). DOI: 10.1016/j.nimb.2017.03.082.

Quantitative picosecond laser-induced fluorescence measurements of nitric oxide in flames

C. Brackmann, J. Bood, J. D. Nauclér, A. A. Konnov, and M. Aldén, Proceedings of the Combustion Institute 36 (3), 4533-4540 (2017). DOI: 10.1016/j.proci.2016.07.012.

The ELI-ALPS facility: the next generation of attosecond sources

S. Kühn, M. Dumergue, S. Kahaly, S. Mondal, M. Füle, T. Csizmadia et al., Journal of Physics B: Atomic, Molecular and Optical Physics 50 (13), 132002 (2017). DOI: 10.1088/1361-6455/aa6ee8.

XUV generation from the interaction of pico- and nanosecond laser pulses with nanostructured targets

E. F. Barte, R. Lokasani, J. Proska, L. Stolcova, O. Maguire, D. Kos et al., in X-ray Lasers and Coherent X-ray Sources: Development and Applications, A. Klisnick, and C. S. Menoni, eds. (SPIE, 2017), pp. 1024315. DOI: 10.1117/12.2265984.

1

2

Content not found