NT340 series

High Energy Broadly Tunable Lasers

NT340 delivers hands‑free, no-gap tuning from from 192 nm to 4400 nm at up 20 Hz repetition rate from the one box. Featuring less than 5 cm‑1 linewdith and wide choice of options laser is excellent choice for very wide range of spectroscopic applications.

Download datasheet
NT340
Overview

Features

  • Customers recognized reliability
  • Two years warranty
  • Hands-free no gap wavelength tuning from 192 to 4400 nm *
  • Up to 90 mJ pulse energy in visible spectral range
  • Up to 15 mJ pulse energy in UV spectral range
  • Up to 20 mJ pulse energy in MIR spectral range
  • 3 – 5 ns pulse duration
  • Up to 20 Hz pulse repetition rate
  • Remote control via key pad or PC
  • Optional separate shared output port for 532/1064 nm beam (separate output port for the 355 nm beam is standard)
  • OPO pump energy monitoring
  • Hermetically sealed oscillator cavity protects non-linear crystals from dust and humidity

* Automatic wavelength scan is programmable

Applications

  • Laser-induced fluorescence
  • Flash photolysis
  • Photobiology
  • Remote sensing
  • Time-resolved spectroscopy
  • Non-linear spectroscopy
  • Vibrational spectroscopy
  • Cavity ring-down CRDS,
  • cavity ring-down laser absorption CRLAS spectroscopy
  • Infrared spectroscopy
  • Gas spectroscopy

Description

The NT340 series tunable wavelength nanosecond laser seamlessly integrates the nanosecond optical parametric oscillator and the Nd:YAG Q-switched nanosecond laser – all in a compact housing.

The main system features are: hands-free wavelength tuning from UV to IR, high conversion efficiency, optional fiber-coupled output and separate output port for pump laser beam.

NT340 has a linewidth of less than 5 cm‑1, which is ideal for many spectroscopic applications.

The laser is designed for convenient use. The OPO pump energy monitoring system helps to control pump laser parameters. Replacement of laser flashlamps can be done without misalignment of the laser cavity and/or deterioration of laser performance.

Benefits

  • Hands-free wavelength tuning – no need for physical intervention
  • The system is widely tunable
  • 192 – 4400 nm and delivers high pulse energy (up to 90 mJ) that allows the investigation of an extensive range of materials
  • Narrow linewidth (down to 3 cm‑1) and superior tuning resolution
  • (1 – 2 cm‑1) allows recording of high quality spectra
  • Flashlamps replacement without misalignment of the laser cavity saves on maintenance costs
  • High integration level saves valuable space in the laboratory
  • In-house design and manufacturing of complete systems, including pump lasers, guarantees on-time warranty and post warranty services and spares supply
  • Variety of control interfaces: USB, RS232 and optional LAN, WLAN ensures easy control and integration with other equipment
  • Attenuator and fiber coupling options facilitate incorporation of NT340 systems into various experimental environments

Specifications

ModelNT342BNT342CNT342E
OPO specifications 1)
Wavelength range 2)
Signal410 – 710 nm 3)410 – 710 nm 3)410 – 710 nm 3)
Idler710 – 2600 nm710 – 2600 nm710 – 2600 nm
SH generator (optional)210 – 410 nm210 – 410 nm210 – 410 nm
SH/SF generator (optional)210 – 410 nm210 – 410 nm210 – 410 nm
DUV generator (optional)192 – 210 nm192 – 210 nm192 – 210 nm
MIR generator (optional)n/a2500 – 4400 nmn/a
Output pulse energy
OPO 4)30 mJ60 mJ90 mJ
SH generator (optional) 5)4 mJ6.5 mJ10 mJ
SH/SF generator (optional) 6)6 mJ10 mJ15 mJ
DUV generator (optional) 7)0.6 mJ1.2 mJ2 mJ
MIR generator (optional) 8)n/a20 mJn/a
Linewidth< 5 cm‑1 9)< 5 cm‑1 9)< 5 cm‑1 9)
Minimal tuning step 10)
Signal (410 – 710 nm)1 cm‑11 cm‑11 cm‑1
Idler (710 – 2600 nm)1 cm‑11 cm‑11 cm‑1
SH/SF/DUV (192 – 410 nm)2 cm‑12 cm‑12 cm‑1
MIR (2500 – 4400 nm)n/a1 cm‑1n/a
Pulse duration 11)3 – 5 ns3 – 5 ns3 – 5 ns
Typical beam diameter 12)5 mm8 mm10 mm
Typical beam divergence 13)< 2 mrad< 2 mrad< 2 mrad
Polarization
Signalhorizontalhorizontalhorizontal
Idlerverticalverticalvertical
SH/SFhorizontalhorizontalhorizontal
DUVverticalverticalvertical
MIRn/ahorizontaln/a
Pump laser 14)
Pump wavelength355 nm355 nm355 nm
Typical pump pulse energy100 mJ150 mJ250 mJ
Pulse duration4 – 7 ns4 – 7 ns4 – 7 ns
Beam qualityHat-top in near field,
without hot spots
Hat-top in near field,
without hot spots
Hat-top in near field,
without hot spots
Beam divergence< 0.6 mrad< 0.6 mrad< 0.6 mrad
Pulse energy stability (StdDev)< 3.5 %< 3.5 %< 3.5 %
Pulse repetition rate10 or 20 Hz10 Hz10 Hz
Physical characteristics
Unit size (W × L × H)456 × 821 × 270 mm456 × 821 × 270 mm456 × 821 × 270 mm
Power supply size (W × L × H)330 × 490 × 585 mm330 × 490 × 585 mm330 × 490 × 585 mm
Umbilical length2.5 m2.5 m2.5 m
Operating requirements
Water consumption (max 20 °C) 16)< 10 l/min< 10 l/min< 10 l/min
Room temperature18 – 27 °C18 – 27 °C18 – 27 °C
Relative humidity20 – 80 % (non-condensing)20 – 80 % (non-condensing)20 – 80 % (non-condensing)
Power requirements200 – 240 VAC,
single phase, 50/60 Hz
200 – 240 VAC,
single phase, 50/60 Hz
200 – 240 VAC,
single phase, 50/60 Hz
Power consumption< 1.5 kVA< 1.5 kVA< 1.5 kVA
Cleanliness of the roomnot worse than ISO Class 9not worse than ISO Class 9not worse than ISO Class 9
ModelNT342BNT342CNT342E
  1. Due to continuous improvement, all specifications are subject to change. Parameters marked typical are illustrative; they are indications of typical performance and will vary with each unit we manufacture. Unless stated otherwise, all specifications are measured at 450 nm and for basic system without options.
  2. Hands-free tuning range is from 192 nm to 4400 nm. Up to 2500 nm idler tuning with MIR option.
  3. Tuning range extension to 400 – 709 nm is optional.
  4. Measured at 450 nm. See tuning curves for typical outputs at other wavelengths.
  5. Measured at 260 nm. See tuning curves for typical outputs at other wavelengths.
  6. Measured at 340 nm. SF generator is optimized for maximum output in 300 – 410 nm range. See tuning curves for typical outputs at other wavelengths.
  7. Measured at 200 nm. See tuning curves for typical outputs at other wavelengths.
  8. Measured at 2700 nm. See tuning curves for typical outputs at other wavelengths.
  9. Linewidth is <8 cm‑1 for 210 – 410 nm, 2500 – 4400 nm ranges.
  10. When wavelength is controlled from PC. When wavelength is controlled from keypad, tuning resolution is 0.1 nm for signal, 1 nm for idler, MIR and 0.05 nm for SH, SF and DUV.
  11. FWHM measured with photodiode featuring 1 ns rise time and 300 MHz bandwidth oscilloscope.
  12. Beam diameter is measured at 450 nm at the FWHM level. It is approximate and can vary depending on the pump pulse energy and wavelength.
  13. Full angle measured at the FWHM level at 450 nm, < 5 mrad at 3000 nm with MIR option.
  14. Separate output port for the 355 nm beam is standard. Outputs for 1064 nm and 532 nm beams are optional. Laser output will be optimised for the best OPO operation and specifications may vary with each unit we manufacture.
  15. Length from 821 to 1220 mm depending on configuration.
  16. Air cooled power supply is available as an option.

Note: Laser must be connected to the mains electricity all the time. If there will be no mains electricity for longer that 1 hour then laser (system) needs warm up for a few hours before switching on.

Tuning range extending optional add-ons

OptionFeatures
-SHSecond harmonic generator for 210 – 410 nm range
-SFSum-frequency generator for 300 – 410 nm range with high pulse energy
-SH/SFCombined option for highest pulse energy in 210 – 410 nm range
-DUVDeep UV option for 192 – 210 nm range output
-MIRMid infrared option for 2500 – 4400 nm range output

Accessories and other optional add-ons

OptionFeatures
-FCFiber coupled output in 350 – 2000 nm range
-ATTNAttenuator output in 350 – 2600 nm range
-H, -2HSeparate shared output port for pump laser harmonic (532 or 1064 nm wavelengths)
-AWAir cooled power supply
-FWSFast wavelength scanning option for all ranges (excluding between ranges), wavelength shift on laser shot

Publications

Black phosphorene as a hole extraction layer boosting solar water splitting of oxygen evolution catalysts

K. Zhang, B. Jin, C. Park, Y. Cho, X. Song, X. Shi et al., Nature communications 10 (1), 2001 (2019). DOI: 10.1038/s41467-019-10034-1.

Electronic spectroscopy and nanocalorimetry of hydrated magnesium ions [Mg(H2O)n]+, n = 20–70: spontaneous formation of a hydrated electron?

T. Taxer, M. Ončák, E. Barwa, C. van der Linde, and M. K. Beyer, Faraday Discuss. 217, 584-600 (2019). DOI: 10.1039/C8FD00204E.

Iminothioindoxyl as a molecular photoswitch with 100 nm band separation in the visible range

M. W. Hoorens, M. Medved’, A. D. Laurent, M. Di Donato, S. Fanetti, L. Slappendel et al., Nature Communications 10 (1), 2390 (2019). DOI: 10.1038/s41467-019-10251-8.

Luminescence spectroscopy of oxazine dye cations isolated in vacuo

C. Kjær, and S. B. Nielsen, Phys. Chem. Chem. Phys. 21, 4600-4605 (2019). DOI: 10.1039/C8CP07340F.

Luminescence Spectroscopy of Rhodamine Homodimer Dications in Vacuo Reveals Strong Dye-Dye Interactions

C. Kjær, H. Lissau, N. K. Gravesen Salinas, A. Østergaard Madsen, M. H. Stockett, F. E. Storm et al., ChemPhysChem 20 (4), 533-537 (2019). DOI: 10.1002/cphc.201800933.

Probing the Structural Evolution of the Hydrated Electron in Water Cluster Anions (H2O)n, n ≤ 200, by Electronic Absorption Spectroscopy

A. Herburger, E. Barwa, M. Ončák, J. Heller, C. van der Linde, D. M. Neumark et al., Journal of the American Chemical Society 141 (45), 18000-18003 (2019). DOI: 10.1021/jacs.9b10347.

Pulsed photo-ionization spectroscopy of traps in as-grown and neutron irradiated ammonothermally synthesized GaN

E. Gaubas, T. Čeponis, D. Meškauskaitė, J. Mickevičius, J. Pavlov, V. Rumbauskas et al., Scientific reports 9 (1), 1473 (2019). DOI: 10.1038/s41598-018-38138-6.

The importance of relativistic effects on two-photon absorption spectra in metal halide perovskites

Z. Wei, D. Guo, J. Thieme, C. Katan, V. M. Caselli, J. Even et al., Nature communications 10 (1), 5342 (2019). DOI: 10.1038/s41467-019-13136-y.

Charge carrier transport in polycrystalline CH3NH3PbI3 perovskite thin films in a lateral direction characterized by time-of-flight photoconductivity

S. Emin, E. Pavlica, H. Okuyucu, M. Valant, and G. Bratina, Materials Chemistry and Physics 220, 182-189 (2018). DOI: 10.1016/j.matchemphys.2018.08.012.

Degradation of blue-phosphorescent organic light-emitting devices involves exciton-induced generation of polaron pair within emitting layers

S. Kim, H. J. Bae, S. Park, W. Kim, J. Kim, J. S. Kim et al., Nature communications 9 (1), 1211 (2018). DOI: 10.1038/s41467-018-03602-4.

1

2 3 4

Content not found