PGx01 series

High Energy Broadly Tunable Picosecond OPA

Travelling Wave Optical Parametric Generators (TWOPG) are an excellent choice for researchers who need an ultra‑fast tunable coherent light source from UV to mid IR.

Download datasheet
PGx01
Overview

Features

  • Ultra-wide spectral range from 193 to 16 000 nm
  • High peak power (>50 MW) ideal for non-linear spectroscopy applications
  • Narrow linewidth <6 cm⁻¹ (for UV < 9 cm‑1)
  • Motorized hands-free tuning in 193 – 2 300 nm or 2 300 – 16 000 nm range
  • PC control
  • Remote control via keypad

Applications

  • Nonlinear spectroscopy: vibrational-SFG, surface-SH, Z-scan
  • Pump-probe experiments
  • Laser-induced fluorescence (LIF)
  • Other laser spectroscopy applications

Description

Travelling Wave Optical Parametric Generators (TWOPG) are an excellent choice for researchers who need an ultra‑fast tunable coherent light source from UV to mid IR.

Design

The units can be divided into several functional modules:

  • optical parametric generator (OPG);
  • diffraction grating based linewidth narrowing system (LNS);
  • optical parametric amplifier (OPA);
  • electronic control unit.


The purpose of the OPG module is to generate parametric superfluorescence (PS). Spectral properties of the PS are determined by the properties of a nonlinear crystal and usually vary with the generated wavelength.

In order to produce narrowband radiation, the output from OPG is narrowed by LNS down to 6 cm‑1 and then used to seed OPA.

Output wavelength tuning is achieved by changing the angle of the nonlinear crystal(s) and grating. To ensure exceptional wavelength reproducibility, computerized control unit driven precise stepper motors rotate the nonlinear crystals and diffraction grating. Nonlinear crystal temperature stabilization ensures long‑term stability of the output radiation wavelength.

In order to protect nonlinear crystals from damage, the pump pulse energy is monitored by built-in photodetectors, and the control unit produces an alert signal when pump pulse energy exceeds the preset value.

For customer convenience the laser can be operated from master device or personal computer through USB (VCP, ASCII commands), RS232 (ASCII commands), LAN (REST API) or RS232 (ASCII commands), LAN (REST API) depending on the system configuration or from remote control pad with backlit display that is easy to read even while wearing laser safety glasses.

Available models

ModelFeatures
PG401Model has a tuning range from 420 to 2300 nm and is optimized for providing highest pulse energy in the visible part of the spectrum. The wide tuning range makes PG401 units suitable for many spectroscopy application.
PG501-DFGModel has a tuning range from 2300 to 16000 nm. The PG501-DFG1 model is the optimal choice for vibrational-SFG spectroscopy setups.

Specifications

ModelPG401PG401-SHPG401-DUVPG501-DFG1 2)
OPA specifications 1)
Tuning range
DUV193 – 209.95 nm
SH210 – 340 nm,
370 – 419 nm
Signal410 – 680 nm
Idler740 – 2300 nm
DFG2300 – 10000 nm
Output pulse energy 3) > 1000 µJ at 450 nm> 100 µJ at 300 nm>  50 µJ at 200 nm> 200 µJ at 3700 nm,
> 30 µJ at 10000 nm
Linewidth< 6 cm‑1< 9 cm‑1< 9 cm‑1< 6 cm‑1
Max pulse repetition rate50 Hz50 Hz50 Hz50 Hz
Scanning step
Signal0.1 nm
Idler1 nm
Typical beam size 3)~ 4 mm~ 3 mm~ 3 mm~ 5 mm
Beam divergence 4)< 2 mrad< 2 mrad< 2 mrad
Beam polarization
Signalhorizontal
Idlerhorizontal
OPGverticalverticalhorizontal
Typical pulse duration~20 ps~20 ps~20 ps~20 ps
Pump laser requirements
Pump energy
at 355 nm10 mJ10 mJ10 mJ
at 532 nm10 mJ
at 1064 nm2 mJ6 mJ
Recommended pump source 5)PL2231-50-TH,
PL2251A-TH
PL2231-50-TH,
PL2251A-TH
PL2231-50-TH,
PL2251A-TH
PL2231-50-SH,
PL2251A-SH
Beam divergence< 0.5 mrad< 0.5 mrad< 0.5 mrad< 0.5 mrad
Beam profilehomogeneous, without hot spots, Gaussian fit >90 %homogeneous, without hot spots, Gaussian fit >90 %homogeneous, without hot spots, Gaussian fit >90 %homogeneous, without hot spots, Gaussian fit >90 %
Pulse duration 6)29 ± 5 ps29 ± 5 ps29 ± 5 ps29 ± 5 ps
Physical characteristics
Size (W x L x H)456 × 633 × 244 mm456 × 1031 × 249 ± 3 mm456 × 1031 × 249 ± 3 mm456 × 1031 × 249 ± 3 mm
Operating requirements
Room temperature15 – 30 °C15 – 30 °C15 – 30 °C15 – 30 °C
Power requirements100 – 240 V AC single phase,
47 – 63 Hz
100 – 240 V AC single phase,
47 – 63 Hz
100 – 240 V AC single phase,
47 – 63 Hz
100 – 240 V AC single phase,
47 – 63 Hz
Power consumption< 100 W< 100 W< 100 W< 100 W
ModelPG401PG401-SHPG401-DUVPG501-DFG1 2)
  1. Due to continuous improvement, all specifications are subject to change without notice. Parameters marked typical are not specifications. They are indications of typical performance and will vary with each unit we manufacture. Unless stated otherwise, all specifications are measured at 450 nm for PG401 units, 3000 nm for PG501 units and 300 nm for PG401SH units and for basic system without options.
  2. Only as part of Double resonance SFG.
  3. See tuning curves for typical pulse energies at other wavelengths. Higher energies are available, please contact Ekspla for more details.
  4. Beam diameter is measured at the 1/e² level.
  5. Full angle measured at the FWHM point.
  6. If a pump laser other than PL2250 or PL2230 is used, measured beam profile data should be presented when ordering.
  7. Should be specified if non-EKSPLA pump laser is used.

Note: Laser must be connected to the mains electricity all the time. If there will be no mains electricity for longer that 1 hour then laser (system) needs warm up for a few hours before switching on.

Customized for specific requirements

Please note that these products are custom solutions tailored for specific applications or specific requirements.

Interested? Tell us more about your needs and we will be happy to provide you with tailored solution.

PG401-DFG1 features

  • The broadest hands-free tuning range – from 420 to 10000 nm

Gap free tuning extension for PG401

  • Gap-free tuning range 410 – 709, 710 – 2300 nm
  • Linewidth < 18 cm‑1

Publications

Structure Determination of Hen Egg-White Lysozyme Aggregates Adsorbed to Lipid/Water and Air/Water Interfaces

S. Strazdaite, E. Navakauskas, J. Kirschner, T. Sneideris, and G. Niaura, Langmuir 36 (17), 4766-4775 (2020). DOI: 10.1021/acs.langmuir.9b03826.

Heavy Anionic Complex Creates a Unique Water Structure at a Soft Charged Interface

W. Rock, B. Qiao, T. Zhou, A. E. Clark, and A. Uysal, The Journal of Physical Chemistry C 122 (51), 29228-29236 (2018). DOI: 10.1021/acs.jpcc.8b08419.

How nature covers its bases

S. Boldissar, and M. S. de Vries, Phys. Chem. Chem. Phys. 20, 9701-9716 (2018). DOI: 10.1039/C8CP01236A.

Vibrational fingerprint of localized excitons in a two-dimensional metal-organic crystal

M. Corva, A. Ferrari, M. Rinaldi, Z. Feng, M. Roiaz, C. Rameshan et al., Nature Communications , 4703 (2018). DOI: 10.1038/s41467-018-07190-1.

A structural and temporal study of the surfactants behenyltrimethylammonium methosulfate and behenyltrimethylammonium chloride adsorbed at air/water and air/glass interfaces using sum frequency generation spectroscopy

S. A. Goussous, M. T. L. Casford, S. A. Johnson, and P. B. Davies, Journal of Colloid and Interface Science 488, 365-372 (2017). DOI: 10.1016/j.jcis.2016.10.092.

Excited State Dynamics of 6-Thioguanine

F. M. Siouri, S. Boldissar, J. A. Berenbeim, and M. S. de Vries, The Journal of Physical Chemistry A 121 (28), 5257-5266 (2017). DOI: 10.1021/acs.jpca.7b03036.

Excited-State Dynamics of Isocytosine: A Hybrid Case of Canonical Nucleobase Photodynamics

J. A. Berenbeim, S. Boldissar, F. M. Siouri, G. Gate, M. R. Haggmark, B. Aboulache et al., The Journal of Physical Chemistry Letters 8 (20), 5184-5189 (2017). DOI: 10.1021/acs.jpclett.7b02032.

Quantitative picosecond laser-induced fluorescence measurements of nitric oxide in flames

C. Brackmann, J. Bood, J. D. Nauclér, A. A. Konnov, and M. Aldén, Proceedings of the Combustion Institute 36 (3), 4533-4540 (2017). DOI: 10.1016/j.proci.2016.07.012.

Structure of the Fundamental Lipopeptide Surfactin at the Air/Water Interface Investigated by Sum Frequency Generation Spectroscopy

S. A. Goussous, M. T. L. Casford, A. C. Murphy, G. P. C. Salmond, F. J. Leeper, and P. B. Davies, The Journal of Physical Chemistry B 121 (19), 5072-5077 (2017). DOI: 10.1021/acs.jpcb.7b03476.

2D and 3D imaging of the gas phase close to an operating model catalyst by planar laser induced fluorescence

S. Blomberg, J. Zhou, J. Gustafson, J. Zetterberg, and E. Lundgren, Journal of Physics: Condensed Matter 28 (45), 453002 (2016). DOI: 10.1088/0953-8984/28/45/453002.

1

2

Content not found