Ultra-high intensity

Ultra-high intensity laser applications span a number of scientific disciplines, such as plasma physics and fusion research, atomic molecular & optical physics, femtosecond chemistry, astrophysics, high energy physics, materials science, biology, and medicine.

Ultra-high intensity

Ultra-high intensity

Ultra-high intensity laser applications span a number of scientific disciplines, such as plasma physics and fusion research, atomic molecular & optical physics, femtosecond chemistry, astrophysics, high energy physics, materials science, biology, and medicine.

Areas where a strong impact is possible include:

  • High harmonic generation and attosecond science
  • Relativistic effects in interactions with atoms, molecules and electrons
  • Ultrafast X-ray science
  • High density science
  • Fusion energy research
  • Particle accelerators
  • Thomson scattering
UltraFlux FF

UltraFlux FF.

Custom high pulse energy femtosecond fixed wavelength laser systems delivering up to 1 J pulse energy with pulse duration down to 10 fs.

High-Repetition-Rate Attosecond Extreme Ultraviolet Beamlines at ELI ALPS for Studying Ultrafast Phenomena

M. Shirozhan, S. Mondal, T. Grósz, B. Nagyillés, B. Farkas, A. Nayak et al., Ultrafast Science 4, 0067 (2024). DOI: 10.34133/ultrafastscience.0067.

Characterization and calibration of the Thomson scattering diagnostic suite for the C-2W field-reversed configuration experiment

A. Ottaviano, T. M. Schindler, K. Zhai, E. Parke, E. Granstedt, M. C. Thompson et al., Review of Scientific Instruments 89 (10), 10C120 (2018). DOI: 10.1063/1.5037101.

Conversion efficiency of a laser-plasma source based on a Xe jet in the vicinity of a wavelength of 11 nm

N. I. Chkhalo, S. A. Garakhin, A. Y. Lopatin, A. N. Nechay, A. E. Pestov, V. N. Polkovnikov et al., AIP Advances 8 (10), 105003 (2018). DOI: 10.1063/1.5048288.

Spectral pulse shaping of a 5 Hz, multi-joule, broadband optical parametric chirped pulse amplification frontend for a 10 PW laser system

F. Batysta, R. Antipenkov, T. Borger, A. Kissinger, J. T. Green, R. Kananavičius et al., Opt. Lett. 43 (16), 3866-3869 (2018). DOI: 10.1364/OL.43.003866.

Thomson scattering systems on C-2W field-reversed configuration plasma experiment

K. Zhai, T. Schindler, A. Ottaviano, H. Zhang, D. Fallah, J. Wells et al., Review of Scientific Instruments 89 (10), 10C118 (2018). DOI: 10.1063/1.5037327.

53 W average power CEP-stabilized OPCPA system delivering 5.5 TW few cycle pulses at 1 kHz repetition rate

R. Budriūnas, T. Stanislauskas, J. Adamonis, A. Aleknavičius, G. Veitas, D. Gadonas et al., Opt. Express 25 (5), 5797-5806 (2017). DOI: 10.1364/OE.25.005797.

Development and characterization of a laser-plasma soft X-ray source for contact microscopy

M. G. Ayele, P. W. Wachulak, J. Czwartos, D. Adjei, A. Bartnik,  Wegrzynski et al., Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 411, 35-43 (2017). DOI: 10.1016/j.nimb.2017.03.082.

The ELI-ALPS facility: the next generation of attosecond sources

S. Kühn, M. Dumergue, S. Kahaly, S. Mondal, M. Füle, T. Csizmadia et al., Journal of Physics B: Atomic, Molecular and Optical Physics 50 (13), 132002 (2017). DOI: 10.1088/1361-6455/aa6ee8.

XUV generation from the interaction of pico- and nanosecond laser pulses with nanostructured targets

E. F. Barte, R. Lokasani, J. Proska, L. Stolcova, O. Maguire, D. Kos et al., in X-ray Lasers and Coherent X-ray Sources: Development and Applications, A. Klisnick, and C. S. Menoni, eds. (SPIE, 2017), pp. 1024315. DOI: 10.1117/12.2265984.

EUV spectra from highly charged terbium ions in optically thin and thick plasmas

C. Suzuki, F. Koike, I. Murakami, N. Tamura, S. Sudo, E. Long et al., Journal of Physics: Conference Series 583 (1), 012007 (2015). DOI: 10.1088/1742-6596/583/1/012007.

1

2

Similar applications