Laser spectroscopy

For a long time laser spectroscopy has been source of inspiration for EKSPLA scientific laser engineers. Explore some typical applications where our picosecond and nanosecond lasers has been employed.

Laser spectroscopy

Solid-phase photoluminescence spectroscopy

Time-resolved Photoluminescence Spectroscopy (TRPL) is a contactless method to characterize recombination and transport in solid materials. Measuring TRPL requires exciting luminescence from a sample with a pulsed light source and then measuring the subsequent decay in photoluminescence as a function of time. Most experiments excite the sample with a pulsed laser source and detect the PL with a photodiode, streak camera, or photomultiplier tube set up for upconversion or single-photon counting. The system response time, wavelength range and sensitivity vary widely for each configuration.

It is possible to apply the general methodology of time-resolved photoluminescence for lifetime imaging of the charge carrier dynamics. Nonradiative surface recombination at the boundaries of a semiconductor device can be a major factor limiting the efficiency in light-emitting and laser diodes (LEDs and LDs), photovoltaic cells, and photodetectors. Therefore, the effective lifetime is a crucial parameter to obtain solar cells with a high conversion ratio.

Photoluminescence microscopy also is a powerful optical method for the study of crystal defects in semiconductors and organometallic complexes, with important applications in the manufacturing process of nanostructures, optoelectronic devices and solar cell systems.

Principle of Solid-phase Photoluminescence Spectroscopy

Principle of Solid-phase Photoluminescence Spectroscopy.

Luminescence spectroscopy of oxazine dye cations isolated in vacuo

C. Kjær, and S. B. Nielsen, Phys. Chem. Chem. Phys. 21, 4600-4605 (2019). DOI: 10.1039/C8CP07340F.

How nature covers its bases

S. Boldissar, and M. S. de Vries, Phys. Chem. Chem. Phys. 20, 9701-9716 (2018). DOI: 10.1039/C8CP01236A.

Near infrared emission properties of Er doped cubic sesquioxides in the second/third biological windows

D. Avram, I. Tiseanu, B. S. Vasile, M. Florea, and C. Tiseanu, Scientific Reports 8 (1), 18033 (2018). DOI: 10.1038/s41598-018-36639-y.

Quenching of the red Mn4+ luminescence in Mn4+-doped fluoride LED phosphors

T. Senden, R. J. van Dijk‑Moes, and A. Meijerink, Light: Science \\& Applications 7 (1), 8 (2018). DOI: 10.1038/s41377-018-0013-1.

Ultra-sensitive mid-infrared emission spectrometer with sub-ns temporal resolution

L. Chen, D. Schwarzer, J. A. Lau, V. B. Verma, M. J. Stevens, F. Marsili et al., Opt. Express 26 (12), 14859-14868 (2018). DOI: 10.1364/OE.26.014859.

Excited State Dynamics of 6-Thioguanine

F. M. Siouri, S. Boldissar, J. A. Berenbeim, and M. S. de Vries, The Journal of Physical Chemistry A 121 (28), 5257-5266 (2017). DOI: 10.1021/acs.jpca.7b03036.

Nanoscale insights into doping behavior, particle size and surface effects in trivalent metal doped SnO2

B. Cojocaru, D. Avram, V. Kessler, V. Parvulescu, G. Seisenbaeva, and C. Tiseanu, Scientific reports 7 (1), 9598 (2017). DOI: 10.1038/s41598-017-09026-2.

Non-Poissonian photon statistics from macroscopic photon cutting materials

M. De Jong, A. Meijerink, and F. T. Rabouw, Nature communications 8 (1), 15537 (2017). DOI: 10.1038/ncomms15537.

A cylindrical quadrupole ion trap in combination with an electrospray ion source for gas-phase luminescence and absorption spectroscopy

M. H. Stockett, J. Houmøller, K. Støchkel, A. Svendsen, and S. Brøndsted Nielsen, Review of Scientific Instruments 87 (5), 053103 (2016). DOI: 10.1063/1.4948316.

Aerobic photoreactivity of synthetic eumelanins and pheomelanins: generation of singlet oxygen and superoxide anion

G. Szewczyk, A. Zadlo, M. Sarna, S. Ito, K. Wakamatsu, and T. Sarna, Pigment Cell & Melanoma Research 29 (6), 669-678 (2016). DOI: 10.1111/pcmr.12514.

1

2

Similar applications