Laser spectroscopy
For a long time laser spectroscopy has been source of inspiration for EKSPLA scientific laser engineers. Explore some typical applications where our picosecond and nanosecond lasers has been employed.
Terahertz spectroscopy
Terahertz time-domain spectroscopy (THz-TDS) probes inter-molecular interactions within solid materials. THz-TDS covers the spectral region of 0.1-10 THz which is a low energy and non-ionizing region of the electromagnetic spectrum. THz-TDS is a powerful technique for material characterization and process control and has several distinct advantages for use in spectroscopy. It can give the amplitude and phase information of the sample simultaneously. Many materials are transparent at terahertz wavelengths, and this radiation is safe for biological tissue being non-ionizing (as opposed to X-rays). It has been used for contact-free conductivity measurements of metals, semiconductors, 2D materials, and superconductors. Furthermore, THz-TDS has been used to identify chemical components such as amino acids, peptides, pharmaceuticals, and explosives, which makes it particularly valuable for fundamental science, security, and medical applications.
Compact, low-cost, and broadband terahertz time-domain spectrometer
Terahertz time-domain spectroscopy (THz-TDS) is a powerful technique that enables the characterization of a large range of bulk materials, devices, and products. Although this technique has been increasingly used in research and industry, the standard THz-TDS configuration relying on the use of a near-infrared (NIR) laser source remains experimentally complex and relatively costly, impeding its availability to those without the expertise to build a high-performance setup based on nonlinear optics or without the financial means to acquire a commercial unit. Broadband THz-TDS systems require an even larger financial investment, primarily because the generation and detection of spectral components exceeding 3 THz typically need an ultrafast NIR source delivering sub-100-fs pulses. Such an ultrafast source can be bulky and cost upwards of $100,000. Here, we present a broadband, compact, and portable THz-TDS system comprising three modules that allow for the implementation of a single low-cost ultrafast laser, hence significantly decreasing the overall cost of the system. In the first module, the output laser pulses are spectrally broadened through nonlinear propagation in a polarization-maintaining optical fiber and then temporally compressed to achieve a higher peak power. The other two modules utilize thick nonlinear crystals with periodically patterned surfaces that diffract NIR pulses and optimize the efficiency of THz generation and detection processes by enabling a noncollinear beam geometry. Phase-matching conditions in the nonlinear crystals are controlled by the period of the gratings to gain access to a large spectral THz bandwidth. The whole system, combining these three modules, provides access to a THz spectrum peaking at 3.5 THz and extending beyond 6 THz with a maximum dynamic range of 50 dB for time-resolved spectroscopy applications. We demonstrate the functionality of this configuration by performing THz spectroscopy measurements of water vapor contained within a closed cell. Our compact system design paves the way towards a high-performance, yet cost-effective, THz-TDS system that can be readily used in academia and industry.
Terahertz Spectroscopy for Gastrointestinal Cancer Diagnosis
In this chapter, we present a number of sensitive measurement modalities for the study and analysis of human cancer-affected colon and gastric tissue using terahertz (THz) spectroscopy. Considerable advancements have been reached in characterization of bio-tissue with some accuracy, although too dawn, and still long and exhaustive work have to be done towards well-established and reliable applications. The advent of the THz-time-domain spectroscopy (THz-TDS) test modality at a sub-picosecond time resolution has arguably fostered an intensive work in this field’s research line. The chapter addresses some basic theoretical aspects of this measurement modality with the presentation of general experimental laboratory setup diagrams for THz generation and detection, sample preparation aspects, samples optical parameters calculation procedures and data analysis.