PL2230 series

Diode Pumped High Energy Picosecond Nd:YAG Lasers

PL2230 series diode-pumped, air-cooled, mode-locked picosecond Nd:YAG lasers provide high up to 40 mJ energy picosecond pulses at a 100 Hz  pulse repetition rate. Precise pulse energy control, excellent short-term and long-term stabilit makes PL2230 series picosecond lasers an excellent choice for many demanding scientific applications.

Download datasheet
PL2230
Overview

Features

  • Diode pumped power amplifier producing up to 40 mJ per pulse at 1064 nm
  • Beam profile improvement using advanced beam shaping system
  • Hermetically sealed DPSS master oscillator
  • Diode pumped regenerative amplifier
  • Air-cooled
  • <30 ps pulse duration
  • Excellent pulse duration stability
  • Up to 100 Hz repetition rate
  • Streak camera triggering pulse with <10 ps jitter
  • Excellent beam pointing stability
  • Thermo stabilized second, third or fourth harmonic generator options
  • PC control
  • Remote control via keypad

Applications

  • Time resolved fluorescence (including streak camera measurements)
  • SFG/SHG spectroscopy
  • Nonlinear spectroscopy
  • Laser-induced breakdown spectroscopy
  • OPG pumping
  • Remote laser sensing
  • Satellite ranging
  • Other spectroscopic and nonlinear optics applications

Description

Innovative design

The heart of the system is a diode pumped solid state (DPSS) master oscillator placed in a sealed monolithic block, producing high repetition rate pulse trains (90 MHz) with a low single pulse energy of several nJ. Diode pumped amplifiers are used for amplification of the pulse to 30 mJ or up to 40 mJ output. The high‑gain regenerative amplifier has an amplification factor in the proximity of 10⁶. After the regenerative amplifier, the pulse is directed to a multipass power amplifier that is optimized for efficient stored energy extraction from the Nd:YAG rod, while maintaining a near Gaussian beam profile and low wavefront distortion. The output pulse energy can be adjusted in approximately 1% steps, while pulse‑to-pulse energy stability remains at less than 0.5% rms at 1064 nm.

Angle-tuned KD*P and KDP crystals mounted in thermostabilised ovens are used for second, third, and fourth harmonic generation. Harmonic separators ensure the high spectral purity of each harmonic guided to different output ports.

Built-in energy monitors continuously monitor output pulse energy. Data from the energy monitor can be seen on the remote keypad or on a PC monitor. The laser provides triggering pulses for the synchronisation of your equipment. The lead of the triggering pulse can be up to 500 ns and is user adjustable in ~0.25 ns steps from a personal computer. Up to 1000 μs lead of triggering pulse is available as a pretrigger feature. Precise pulse energy control, excellent short-term and long-term stability, and a 50 Hz repetition rate makes PL2230 series lasers an excellent choice for many demanding scientific applications.

Simple and convenient laser control

For customer convenience the laser can be operated from master device or personal computer through USB (VCP, ASCII commands), RS232 (ASCII commands), LAN (REST API) or RS232 (ASCII commands), LAN (REST API) depending on the system configuration or from remote control pad with backlit display that is easy to read even while wearing laser safety glasses.

Communication interfaceDescription
USBvirtual serial port, ASCII commands
RS232ASCII commands
LANREST API
WLANREST API

Specifications

ModelPL2230-100PL2230A-100PL2231-50PL2231A-50
Main specifications 1)
Pulse energy 2)
at 1064 nm3 mJ6 mJ30 mJ40 mJ
at 532 nm 3)1.3 mJ3 mJ13 mJ18 mJ
at 355 nm 4)0.9 mJ2 mJ9 mJ13 mJ
at 266 nm 5)0.3 mJ0.6 mJ3 mJ5 mJ
at 213 nm 6)inquireinquireinquireinquire
Pulse energy stability (StdDev) 7)
at 1064 nm< 0.2 %< 0.6 %< 0.5 %< 0.5 %
at 532 nm< 0.4 %< 0.4 %< 0.8 %< 0.8 %
at 355 nm< 0.5 %< 0.5 %< 1.1 %< 1.1 %
at 266 nm< 0.5 %< 0.5 %< 1.2 %< 1.2 %
at 213 nm< 1.5 %< 1.5 %< 1.5 %< 1.5 %
Pulse duration (FWHM) 8)29 ± 5 ps29 ± 5 ps29 ± 5 ps29 ± 5 ps
Pulse duration stability 9)± 1 %± 1 %± 1 %± 1 %
Power drift 10)± 2 %± 2 %± 2 %± 2 %
Pulse repetition rate
    at 1064, 532, 355 nm0 – 100 Hz100 Hz50 Hz50 Hz
    at 266, 213 nm100 Hz100 Hz10 Hz10 Hz
Polarization 11)vertical, > 99 %vertical, > 99 %vertical, > 99 %vertical, > 99 %
Pre-pulse contrast 12)> 200 : 1> 200 : 1> 200 : 1> 200 : 1
Beam profile 13)close to Gaussianclose to Gaussianclose to Gaussianclose to Gaussian
Beam divergence 14)< 1.5 mrad< 0.7 mrad< 0.7 mrad< 0.7 mrad
Beam propagation ratio M2< 1.3< 1.3< 2.5< 2.5
Beam pointing stability (RMS) 15)≤ 10 μrad≤ 20 μrad≤ 20 μrad≤ 20 μrad
Typical beam diameter 16)~ 2 mm~ 2.5 mm~ 6 mm~ 7 mm
Optical pulse jitter
    Internal triggering regime 17)<50 ps<50 ps<50 ps<50 ps
    External triggering regime 18)~3 ns~3 ns~3 ns~3 ns
TRIG1 OUT pulse delay 19)-500 … 50 ns-500 … 50 ns-500 … 50 ns-500 … 50 ns
Typical warm-up time5 min10 min15 min15 min
Physical characteristics
Laser head size (W × L × H)456×1031×249 ± 3 mm456×1031×249 ± 3 mm456×1031×249 ± 3 mm456×1031×249 ± 3 mm
Electrical cabinet size (W × L × H)12 V DC power adapter, 
85×170×41 ± 3 mm
471×391×147 ± 3 mm471×391×147 ± 3 mm471×391×147 ± 3 mm
Umbilical length2.5 m2.5 m2.5 m2.5 m
Operating requirements
Cooling 20)not required, air coolednot required, air cooledstand-alone chillerstand-alone chiller
Room temperature22 ± 2 °C22 ± 2 °C22 ± 2 °C22 ± 2 °C
Relative humidity20 – 80 %
(non-condensing)
20 – 80 %
(non-condensing)
20 – 80 %
(non-condensing)
20 – 80 %
(non-condensing)
Power requirements110 – 240 V AC, 50/60 Hz110 – 240 V AC, 5 A,
single phase 50/60 Hz
110 – 240 V AC, 5 A,
single phase 50/60 Hz
110 – 240 V AC, 5 A,
single phase 50/60 Hz
Power consumption< 0.15 kVA< 1.0 kVA< 1.0 kVA< 1.0 kVA
ModelPL2230-100PL2230A-100PL2231-50PL2231A-50
  1. Due to continuous improvement, all specifications are subject to change without notice. Parameters marked typical are not specifications. They are indications of typical performance and will vary with each unit we manufacture. Unless stated otherwise, all specifications are measured at 1064 nm and for basic system without options.
  2. Outputs are not simultaneous.
  3. For PL2230 series laser with –SH, -SH/TH, -SH/FH or -SH/TH/FH option or –SH/TH/FH/FiH module.
  4. For PL2230 series laser with –TH, -SH/TH or -SH/TH/FH option or –SH/TH/FH/FiH module.
  5. For PL2230 series laser with -SH/FH or -SH/TH/FH option or –SH/TH/FH/FiH module.
  6. For PL2230 series laser with –SH/TH/FH/FiH module.
  7. Averaged from pulses, emitted during 30 sec time interval.
  8. FWHM. Inquire for optional pulse durations in 20 – 90 ps range. Pulse energy specifications may differ from indicated here.
  9. Measured over 1 hour period when ambient temperature variation is less than ±1 °C.
  10. Measured over 8 hours period after 20 min warm-up when ambient temperature variation is less than ± 2 °C.
  11. At 1064 nm.
  12. Peak-to-peak with respect to residual pulses.
  13. In near and far fields. Near field Gaussian fit is >80%.
  14. Average of X- and Y-plane full angle divergence values measured at the 1/e2 level at 1064 nm.
  15. Beam pointing stability is evaluated from fluctuations of beam centroid position in the far field.
  16. Beam diameter is measured at 1064 nm at the 1/e2 level.
  17. StdDev. With respect to TRIG1 OUT pulse. <10 ps jitter is provided optionally with PRETRIG feature.
  18. StdDev. With respect to SYNC IN pulse.
  19. TRIG1 OUT lead or delay can be adjusted with 0.25 ns steps in specified range.
  20. Air cooled. Adequate room air conditioning should be provided.

Note: Laser must be connected to the mains electricity all the time. If there will be no mains electricity for longer that 1 hour then laser (system) needs warm up for a few hours before switching on.

Ordering information of PL2230 lasers

Ordering information of PL2230 lasers.

Options

-P20

Provides 20 ps ±10% output pulse duration. Pulse energies are ~ 30 % lower in comparison to the 29 ps pulse duration version. See table below for pulse energy specifications:

ModelPL2231-50PL2231A-50
1064 nm23 mJ28 mJ
532 nm9 mJ13 mJ
355 nm6 mJ9 mJ
266 nm2 mJ4 mJ

PL2231A-50 HE

Pulse repetition rate 50 Hz. The pulse energy is ~30% higher compared to the laser without depolarization compensation. 29±5 ps output pulse duration. See table below for pulse energy specifications:

Model 1) 2)PL2231A-50 HE
1064 nm50 mJ
  1. Due to continuous improvement, all specifications are subject to change without notice. Parameters marked typical are not specifications. They are indications of typical performance and will vary with each unit we manufacture. Unless stated otherwise, all specifications are measured at 1064 nm and for basic system without options. Specifications for model PL2231C are preliminary and should be confirmed against quotation and purchase order.
  2. Outputs are not simultaneous.

-P80

Provides 80 ps ± 10% output pulse duration. Pulse energy specifications are same as those of 29 ps lasers.

-P10

10±2 ps pulse duration. Pulse energies are ~ 50% lower in comparison to the 29 ps pulse duration version. Valid only for PL2230A-100.

-PLL

Allows locking the master oscillator pulse train repetition rate to an external RF generator, enabling precise external triggering with low jitter. Inquire for more information.

PL2231A-10

Pulse repetition rate 10 Hz. The pulse energy is ~2 times higher compared to the 50 Hz laser version. 29±5 ps output pulse duration. See table below for pulse energy specifications:

Model 1) 2)PL2231A-10
1064 nm80 mJ
532 nm 3)50 mJ
355 nminquire
216 nminquire
213 nminquire
  1. Due to continuous improvement, all specifications are subject to change without notice. Parameters marked typical are not specifications. They are indications of typical performance and will vary with each unit we manufacture. Unless stated otherwise, all specifications are measured at 1064 nm and for basic system without options. Specifications for model PL2231C are preliminary and should be confirmed against quotation and purchase order.
  2. Outputs are not simultaneous.
  3. For PL2231A-10 series laser with –SH module.

Publications

Ultrafast transient absorption spectra and kinetics of human blue cone visual pigment at room temperature

A. Krishnamoorthi, D. Salom, A. Wu, K. Palczewski, and P. M. Rentzepis, Proceedings of the National Academy of Sciences 121 (41), e2414037121 (2024). DOI: 10.1073/pnas.2414037121.

Near infrared-triggered liposome cages for rapid, localized small molecule delivery

J. E. Shin, M. O. Ogunyankin, and J. A. Zasadzinski, Scientific reports 10 (1), 1706 (2020). DOI: 10.1038/s41598-020-58764-3.

Structure Determination of Hen Egg-White Lysozyme Aggregates Adsorbed to Lipid/Water and Air/Water Interfaces

S. Strazdaite, E. Navakauskas, J. Kirschner, T. Sneideris, and G. Niaura, Langmuir 36 (17), 4766-4775 (2020). DOI: 10.1021/acs.langmuir.9b03826.

A primary radiation standard based on quantum nonlinear optics

S. Lemieux, E. Giese, R. Fickler, M. V. Chekhova, and R. W. Boyd, Nature Physics 15 (6), 529-532 (2019). DOI: 10.1038/s41567-019-0447-2.

High-performance all-organic DFB and DBR waveguide laser with various grating height fabricated by a two-photon absorption DLW method

N. Tsutsumi, K. Kaida, K. Kinashi, and W. Sakai, Scientific Reports 9 (1), 10582 (2019). DOI: 10.1038/s41598-019-47098-4.

Vibrational Relaxation Lifetime of a Physisorbed Molecule at a Metal Surface

S. Kumar, H. Jiang, M. Schwarzer, A. Kandratsenka, D. Schwarzer, and A. M. Wodtke, Phys. Rev. Lett. 123, 156101 (2019). DOI: 10.1103/PhysRevLett.123.156101.

Heavy Anionic Complex Creates a Unique Water Structure at a Soft Charged Interface

W. Rock, B. Qiao, T. Zhou, A. E. Clark, and A. Uysal, The Journal of Physical Chemistry C 122 (51), 29228-29236 (2018). DOI: 10.1021/acs.jpcc.8b08419.

How nature covers its bases

S. Boldissar, and M. S. de Vries, Phys. Chem. Chem. Phys. 20, 9701-9716 (2018). DOI: 10.1039/C8CP01236A.

Ultra-sensitive mid-infrared emission spectrometer with sub-ns temporal resolution

L. Chen, D. Schwarzer, J. A. Lau, V. B. Verma, M. J. Stevens, F. Marsili et al., Opt. Express 26 (12), 14859-14868 (2018). DOI: 10.1364/OE.26.014859.

Vibrational fingerprint of localized excitons in a two-dimensional metal-organic crystal

M. Corva, A. Ferrari, M. Rinaldi, Z. Feng, M. Roiaz, C. Rameshan et al., Nature Communications , 4703 (2018). DOI: 10.1038/s41467-018-07190-1.

1

2

Content not found