NT240 series

Broadly Tunable kHz Pulsed DPSS Lasers

NT240 delivers hands‑free, no-gap tuning from 210 to 2600 nm from the one box.  With its 1000 Hz repetition rate, the NT240 series laser establishes itself as a versatile tool for many laboratory applications, including laser induced fluorescence, flash photolysis, photobiology, metrology, remote sensing.

Download datasheet
NT240
Overview

Features

  • Customers recognized reliability
  • Two years warranty
  • Integrates DPSS pump laser and OPO into a single housing
  • Hands-free no-gap wavelength tuning from 210 to 2600 nm*
  • 1000 Hz pulse repetition rate
  • More than 60 µJ output pulse energy in UV
  • Less than 5 cm‑1 linewidth
  • 3 – 6 ns pulse duration
  • Remote control via key pad or PC
  • Optional separate output for the OPO pump beam 355 nm, 532 nm or 1064 nm

* Automatic wavelength scan is programmable

Applications

  • Laser-induced fluorescence spectroscopy
  • Pump-probe spectroscopy
  • Non-linear spectroscopy
  • Time-resolved spectroscopy
  • Photobiology
  • Remote sensing
  • Determination of the telescope throughput

Description

NT240 series lasers produce pulses at an unprecedented 1 kHz pulse repetition rate, tunable over a broad spectral range.

Integrated into a single compact housing, the diode pumped Q-switched Nd:YAG laser and OPO offers hands‑free, no-gap tuning from 210 to 2600 nm. With its 1000 Hz repetition rate, the NT240 series laser establishes itself as a versatile tool for many laboratory applications, including laser induced fluorescence, flash photolysis, photobiology, metrology, remote sensing, etc.

NT240 series systems can be controlled from a remote control pad or/and a computer using supplied LabVIEW™ drivers. The control pad allows easy control of all parameters and features on a backlit display that is easy to read even with laser safety eyewear.

Thanks to a DPSS pump source, the laser requires little maintenance. It is equipped with air-cooled built-in chiller, which further reduces running costs. A built‑in OPO pump energy monitor allows monitoring of pump laser performance without the use of external power meters. The optional feature provides a separate output port for the 1064, 532 or 355 nm beam.

Benefits

  • Hands-free wavelength tuning – no need for physical intervention
  • High repetition rate 1000 Hz enables fast data collection
  • End pumping with diode technology ensures high reliability and low maintenance costs
  • Narrow linewidth (down to 3 cm‑1) and superior tuning resolution
  • (1 – 2 cm‑1) allow recording of high quality spectra
  • High integration level saves valuable space in the laboratory
  • In-house design and manufacturing of complete systems, including pump lasers, guarantees on-time warranty and post warranty services and spares supply
  • Variety of control interfaces: USB, RS232, LAN and WLAN ensures easy control and integration with other equipment
  • Attenuator and fiber coupling options facilitate incorporation of NT240 systems into various experimental environments

Specifications

ModelNT242NT242-SHNT242-SFNT242-SH/SF
OPO specifications 1)
Wavelength range
Signal405 – 710 nm405 – 710 nm405 – 710 nm405 – 710 nm
Idler710 – 2600 nm710 – 2600 nm710 – 2600 nm710 – 2600 nm
SH and SF210 – 300 nm300 – 405 nm210 – 405 nm
Pulse energy 2)
OPO450 μJ450 μJ450 μJ450 μJ
SH and SF40 μJ at 230 nm60 μJ at 320 nm60 μJ at 320 nm
Pulse repetition rate1000 Hz1000 Hz1000 Hz1000 Hz
Pulse duration 3)3 – 6 ns3 – 6 ns3 – 6 ns3 – 6 ns
Linewidth 4)< 5 cm‑1< 5 cm‑1< 5 cm‑1< 5 cm‑1
Minimal tuning step 5)
Signal1 cm‑11 cm‑11 cm‑11 cm‑1
Idler1 cm‑11 cm‑11 cm‑11 cm‑1
SH and SF2 cm‑12 cm‑12 cm‑1
Polarization
Signalhorizontalhorizontalhorizontalhorizontal
Idlerverticalverticalverticalvertical
SH and SFverticalverticalvertical
Typical beam diameter 6)3 × 6 mm3 × 6 mm3 × 6 mm3 × 6 mm
Pump laser
Pump wavelength 7)355 nm355 nm355 / 1064 nm355 / 1064 nm
Typical pump pulse energy 8)3 mJ3 mJ3 / 1 mJ3 / 1 mJ
Pulse duration 3)4 – 6 ns at 1064 nm4 – 6 ns at 1064 nm4 – 6 ns at 1064 nm4 – 6 ns at 1064 nm
Physical characteristics
Unit size (W × L × H)456 × 1040 × 297 mm456 × 1040 × 297 mm456 × 1040 × 297 mm456 × 1040 × 297 mm
Power supply size (W × L × H)520 × 400 × 286 mm520 × 400 × 286 mm520 × 400 × 286 mm520 × 400 × 286 mm
Umbilical length2.5 m2.5 m2.5 m2.5 m
Operating requirements
Coolingbuilt-in chillerbuilt-in chillerbuilt-in chillerbuilt-in chiller
Room temperature18 – 27 °C18 – 27 °C18 – 27 °C18 – 27 °C
Relative humidity20 – 80 %
(non-condensing)
20 – 80 %
(non-condensing)
20 – 80 %
(non-condensing)
20 – 80 %
(non-condensing)
Power requirements100 – 240 V AC,
single phase,
50/60 Hz
100 – 240 V AC,
single phase,
50/60 Hz
100 – 240 V AC,
single phase,
50/60 Hz
100 – 240 V AC,
single phase,
50/60 Hz
Power consumption< 1.5 kW< 1.5 kW< 1.5 kW< 1.5 kW
Cleanliness of the roomnot worse than
ISO Class 9
not worse than
ISO Class 9
not worse than
ISO Class 9
not worse than
ISO Class 9
ModelNT242NT242-SHNT242-SFNT242-SH/SF
  1. Due to continuous improvement, all specifications are subject to change. Parameters marked typical are illustrative; they are indications of typical performance and will vary with each unit we manufacture. Unless stated otherwise, all specifications are measured at 450 nm and for basic system without options.
  2. See tuning curves for typical outputs at other wavelengths.
  3. Measured at FWHM level with photodiode featuring 1 ns rise time and 300 MHz bandwidth oscilloscope.
  4. Linewidth is <8 cm‑1 for 210 – 405 nm range.
  5. For manual input from PC. When wavelength is controlled from keypad, tuning resolution is 0.1 nm for signal, 1 nm for idler and 0.05 nm for SH and SF.
  6. Beam diameter is measured at 450 nm at the 1/e2 level and can vary depending on the pump pulse energy.
  7. Separate output port for the 3rd and other harmonic is optional.
  8. The pump laser pulse energy will be optimized for best OPO performance. The actual pump laser output can vary with each unit we manufacture.

Note: Laser must be connected to the mains electricity all the time. If there will be no mains electricity for longer that 1 hour then laser (system) needs warm up for a few hours before switching on.

Accessories and optional items

OptionFeatures
-SHTuning range extension in UV range (210 – 300 nm) by second harmonic generation
-SFTuning range extension in 300 – 405 nm range by sum-frequency generation
-SH/SFTuning range extension in 210 – 405 nm range by combining second harmonics and sum-frequency generator outputs for maximum possible pulse energy
-SCUSpectral filtering accessory for improved spectral purity of pulses
-H, -2H, -3H1064, 532 and 355 nm output via separate port
-FCFiber coupler
-ATTNAttenuator option
OptionFeatures

Publications

Considerable matrix shift in the electronic transitions of helium-solvated cesium dimer cation Cs2He+n

L. Kranabetter, N. K. Bersenkowitsch, P. Martini, M. Gatchell, M. Kuhn, F. Laimer et al., Physical Chemistry Chemical Physics 21 (45), 25362-25368 (2019). DOI: 10.1039/C9CP04790E.

Contrast agent enhanced multimodal photoacoustic microscopy and optical coherence tomography for imaging of rabbit choroidal and retinal vessels in vivo

V. P. Nguyen, Y. Li, W. Qian, B. Liu, C. Tian, W. Zhang et al., Scientific Reports 9 (1), 5945 (2019). DOI: 10.1038/s41598-019-42324-5.

Electronic spectroscopy and nanocalorimetry of hydrated magnesium ions [Mg(H2O)n]+, n = 20–70: spontaneous formation of a hydrated electron?

T. Taxer, M. Ončák, E. Barwa, C. van der Linde, and M. K. Beyer, Faraday Discuss. 217, 584-600 (2019). DOI: 10.1039/C8FD00204E.

High-resolution multimodal photoacoustic microscopy and optical coherence tomography image-guided laser induced branch retinal vein occlusion in living rabbits

V. P. Nguyen, Y. Li, W. Zhang, X. Wang, and Y. M. Paulus, Scientific reports 9 (1), 10560 (2019). DOI: 10.1038/s41598-019-47062-2.

High-resolution, high-contrast mid-infrared imaging of fresh biological samples with ultraviolet-localized photoacoustic microscopy

J. Shi, T. T. W. Wong, Y. He, L. Li, R. Zhang, C. S. Yung et al., Nature Photonics 13 (9), 609-615 (2019). DOI: 10.1038/s41566-019-0441-3.

Impact of molecular quadrupole moments on the energy levels at organic heterojunctions

M. Schwarze, K. S. Schellhammer, K. Ortstein, J. Benduhn, C. Gaul, A. Hinderhofer et al., Nature communications 10 (1), 2466 (2019). DOI: 10.1038/s41467-019-10435-2.

Luminescence spectroscopy of oxazine dye cations isolated in vacuo

C. Kjær, and S. B. Nielsen, Phys. Chem. Chem. Phys. 21, 4600-4605 (2019). DOI: 10.1039/C8CP07340F.

High-resolution, in vivo multimodal photoacoustic microscopy, optical coherence tomography, and fluorescence microscopy imaging of rabbit retinal neovascularization

W. Zhang, Y. Li, V. P. Nguyen, Z. Huang, Z. Liu, X. Wang et al., Light: Science & Applications 7 (1), 103 (2018). DOI: 10.1038/s41377-018-0093-y.

Photochemistry and spectroscopy of small hydrated magnesium clusters Mg+(H2O)n, n = 1–5

M. Ončák, T. Taxer, E. Barwa, C. van der Linde, and M. K. Beyer, The Journal of Chemical Physics 149 (4), 044309 (2018). DOI: 10.1063/1.5037401.

Photodissociation of Sodium Iodide Clusters Doped with Small Hydrocarbons

N. K. Bersenkowitsch, M. Ončák, J. Heller, C. van der Linde, and M. K. Beyer, Chemistry – A European Journal 24 (47), 12433-12443 (2018). DOI: 10.1002/chem.201803017.

1

2 3

Content not found