Tunable wavelength lasers

Featuring probably the widest hands free no gap tuning range from 193 to 16000 nm, small-footprint box and decades long tested reliability, tunable wavelength systems are versatile and true „workhorse“ in laboratory from basic research to most complicated spectroscopy applications.

Tunable wavelength lasers
Summary

Tailored for your research

For researchers demanding wide tuning range, high conversion efficiency and narrow line-width, EKSPLA tunable wavelength series lasers are an excellent choice. All models feature hands-free wavelength tuning, valuable optical components protection system as well as wide range of accessories and extension units.

Long-term experience and close cooperation with scientific institutions made it possible to create range of models, offering probably the widest tuning range: from 193 nm to 17000 nm. Versions, offering near transform limited line-width as well as operating at kHz repetition rates are available.

Range of products include integrated versions (OPO and pump laser in one housing) as well as stand-alone picosecond optical parametric generators.

A built‑in OPO pump energy monitor allows monitoring of pump laser performance without the use of external power meters. For customer convenience the wavelength can be set from personal computer through USB (VCP, ASCII commands), RS232 (ASCII commands), LAN (REST API) or RS232 (ASCII commands), LAN (REST API) depending on the system configuration or from remote control pad

Wide range of available options, accessories and modifications enable to tailor laser to better fit for your requirement. High conversion efficiency, stable output, easy maintenance, robust design and compact size make tunable wavelength laser systems from EKSPLA an excellent choice for many applications including laser induced fluorescence, time-resolved pump-probe, nonlinear, infrared spectroscopy, flash photolysis, photobiology, metrology, remote sensing and many others.

Product comparison table

ModelWavelength rangeRepetition rateLinewidthSpecial feature
Picosecond laser systems
1403 – 17000 nm87 MHz< 5 cm‑1Picosecond MHz rate MIR range laser system
210 – 2300 nm1000 Hz< 9 cm‑1Pump laser and OPG integrated in 2-in-1 combo housing
2300 – 16000 nm100 Hz< 4 cm‑1Single housing MIR tunable picosecond laser system
193 – 16000 nm50 Hz< 6 cm‑1High peak power (> 50 MW), ideal for non-linear spectroscopy
Nanosecond laser systems
192 – 2600 nm100 Hz< 5 cm‑1High, up to 15 mJ pulse
energy from OPO. DPSS lasers
210 – 2600 nm1000 Hz< 5 cm‑1Broadly tunable kHz pulsed DPSS lasers
335 – 2600 nm1000 Hz< 10 cm‑1UV-NIR range DPSS lasers
192 – 2600 nm10000 Hz< 3 cm‑1Narrow linewidth at kHz repetition rate. DPSS lasers
2500 – 4475 nm1000 Hz< 10 cm‑1Wide IR tuning range at kHz repetition rate. DPSS lasers
192 – 4400 nm20 Hz< 5 cm‑1Wide range of modifications. Flash-lamp pump lasers
ModelWavelength rangeRepetition rateLinewidthSpecial feature

Picosecond laser systems

Nanosecond laser systems

Publications

Infrared Multiple Photon Dissociation Spectroscopy of Hydrated Cobalt Anions Doped with Carbon Dioxide CoCO2(H2O)n, n=1–10, in the C−O Stretch Region

E. Barwa, M. Ončák, T. F. Pascher, A. Herburger, C. van der Linde, and M. K. Beyer, Chemistry – A European Journal 26 (5), 1074-1081 (2020). DOI: 10.1002/chem.201904182.

Structure Determination of Hen Egg-White Lysozyme Aggregates Adsorbed to Lipid/Water and Air/Water Interfaces

S. Strazdaite, E. Navakauskas, J. Kirschner, T. Sneideris, and G. Niaura, Langmuir 36 (17), 4766-4775 (2020). DOI: 10.1021/acs.langmuir.9b03826.

Black phosphorene as a hole extraction layer boosting solar water splitting of oxygen evolution catalysts

K. Zhang, B. Jin, C. Park, Y. Cho, X. Song, X. Shi et al., Nature communications 10 (1), 2001 (2019). DOI: 10.1038/s41467-019-10034-1.

Considerable matrix shift in the electronic transitions of helium-solvated cesium dimer cation Cs2He+n

L. Kranabetter, N. K. Bersenkowitsch, P. Martini, M. Gatchell, M. Kuhn, F. Laimer et al., Physical Chemistry Chemical Physics 21 (45), 25362-25368 (2019). DOI: 10.1039/C9CP04790E.

Contrast agent enhanced multimodal photoacoustic microscopy and optical coherence tomography for imaging of rabbit choroidal and retinal vessels in vivo

V. P. Nguyen, Y. Li, W. Qian, B. Liu, C. Tian, W. Zhang et al., Scientific Reports 9 (1), 5945 (2019). DOI: 10.1038/s41598-019-42324-5.

Electronic spectroscopy and nanocalorimetry of hydrated magnesium ions [Mg(H2O)n]+, n = 20–70: spontaneous formation of a hydrated electron?

T. Taxer, M. Ončák, E. Barwa, C. van der Linde, and M. K. Beyer, Faraday Discuss. 217, 584-600 (2019). DOI: 10.1039/C8FD00204E.

High-resolution multimodal photoacoustic microscopy and optical coherence tomography image-guided laser induced branch retinal vein occlusion in living rabbits

V. P. Nguyen, Y. Li, W. Zhang, X. Wang, and Y. M. Paulus, Scientific reports 9 (1), 10560 (2019). DOI: 10.1038/s41598-019-47062-2.

High-resolution, high-contrast mid-infrared imaging of fresh biological samples with ultraviolet-localized photoacoustic microscopy

J. Shi, T. T. W. Wong, Y. He, L. Li, R. Zhang, C. S. Yung et al., Nature Photonics 13 (9), 609-615 (2019). DOI: 10.1038/s41566-019-0441-3.

Iminothioindoxyl as a molecular photoswitch with 100 nm band separation in the visible range

M. W. Hoorens, M. Medved’, A. D. Laurent, M. Di Donato, S. Fanetti, L. Slappendel et al., Nature Communications 10 (1), 2390 (2019). DOI: 10.1038/s41467-019-10251-8.

Impact of molecular quadrupole moments on the energy levels at organic heterojunctions

M. Schwarze, K. S. Schellhammer, K. Ortstein, J. Benduhn, C. Gaul, A. Hinderhofer et al., Nature communications 10 (1), 2466 (2019). DOI: 10.1038/s41467-019-10435-2.

1

2 3 4 5

...

9

Content not found