NL300 series

Compact Flash-lamp Pumped Q-switched Nd:YAG Lasers

NL300 series electro-optically Q-switched nanosecond Nd:YAG lasers produce high energy pulses with 3 – 6 ns duration at up to 20 Hz repetition rate. A wide range of harmonic generator modules for generation up to a 5th harmonic is available.

Download datasheet

Features

  • Customers recognized reliability
  • Two years warranty
  • Rugged sealed laser cavity
  • Up to 1100 mJ pulse energy
  • Better than 1 % StDev pulse energy stability
  • 5 – 20 Hz pulse repetition rate
  • 3 – 6 ns pulse duration
  • Thermo stabilized second, third, fourth and fifth harmonic generator modules
  • Optional attenuators for fundamental and/or harmonic wavelengths
  • Water-to-water or water-to-air cooling options
  • Replacement of flashlamps without misalignment of laser cavity
  • Remote control via keypad and/or RS232/USB port

Applications

  • Material ablation
  • LIBS (Light Induced Breakdown Spectroscopy)
  • OPO pumping
  • Remote Sensing
  • LIDAR (Light Detection And Ranging)
  • Mass Spectroscopy
  • LIF (Light Induced Fluorescence)

Description

NL300 series electro-optically Q-switched nanosecond Nd:YAG lasers produce high energy pulses with 3 – 6 ns duration. Pulse repetition rate can be selected in range of 5 – 20 Hz. NL30×HT models are designed for maximum energy extraction from the active element. Up to 1100 mJ pulse energy can be produced at a 5 Hz pulse repetition rate.

A wide range of harmonic generator modules for generation up to a 5th harmonic is available. Harmonic generators can be combined with attenuators that allow smooth output energy adjustment without changing other laser parameters, i.e. pulse duration, pulse-to-pulse stability, divergence or beam profile. For a more detailed description of harmonic and attenuator modules please check our Harmonic Generators Selection Guide.

The extremely compact laser head is approximately 480 mm long and can be fitted into tight spaces. The laser power supply has a 330 × 490 mm footprint. Easy access to the water tank from the back side of the power supply facilitates laser maintenance. Replacement of flashlamp does not require removal of pump chamber from the laser cavity and does not lead to possible misalignment.

The powering unit can be configured with water-to-water or water-to-air heat exchangers. The latter option allows for laser operation without the use of tap water for cooling.

For customer convenience the laser can be controlled via PS with LabView™ drivers (included) or a remote control pad. Both options allow easy control of laser settings.

Benefits

  • High pulse energy (up to 1100 mJ at 1064 nm, 700 mJ at 532 nm and 450 mJ at 355 nm) ensures strong interaction with material which is excellent for LIBS and material ablation applications
  • Cost-effective, single-cavity design with no amplifiers for easy alignment, high reliability and low maintenance costs
  • Small size saves valuable space in the laboratory room
  • Fast flashlamp replacement without realignment of laser cavity ensures easy maintenance
  • Air cooling enables simple installation, easy operation and low maintenance costs
  • Variety of interfaces: USB, RS232, optional LAN and WLAN ensures easy integration with other equipment

Specifications

ModelNL303HT-10NL303HT-20NL305HT-10NL305HT-5
Main specifications 1)
Pulse repetition rate10 Hz20 Hz10 Hz5 Hz
Pulse energy
at 1064 nm750 mJ700 mJ1000 mJ1100 mJ
at 532 nm 2)380 mJ320 mJ500 mJ700 mJ
at 355 nm 3)250 mJ210 mJ320 mJ450 mJ
at 266 nm 4)80 mJ60 mJ100 mJ120 mJ
at 213 nm 5)13 mJ10 mJ20 mJ25 mJ
Pulse energy stability (StdDev) 6)
at 1064 nm1.0 %1.0 %1.0 %1.0 %
at 532 nm1.5 %1.5 %1.5 %1.5 %
at 355 nm3.0 %3.0 %3.0 %3.0 %
at 266 nm3.5 %3.5 %3.5 %3.5 %
at 213 nm6.0 %6.0 %6.0 %6.0 %
Power drift 7)±2 %±2 %±2 %±2 %
Pulse duration 8)3 – 6 ns3 – 6 ns3 – 6 ns3 – 6 ns
Polarizationvertical, >90 %vertical, >90 %vertical, >65 %vertical, >90 %
Optical pulse jitter (StdDev) 9)< 0.5 ns< 0.5 ns< 0.5 ns< 0.5 ns
Linewidth< 1 cm‑1< 1 cm‑1< 1 cm‑1< 1 cm‑1
Beam profile 10)Hat-Top in near and
near Gaussian in far fields
Hat-Top in near and
near Gaussian in far fields
Hat-Top in near and
near Gaussian in far fields
Hat-Top in near and
near Gaussian in far fields
Typical beam diameter 11)~8 mm~8 mm~10 mm~10 mm
Beam divergence 12)< 0.6 mrad< 0.6 mrad< 0.6 mrad< 0.6 mrad
Beam pointing stability (RMS) 13)50 µrad50 µrad50 µrad50 µrad
Beam height68 mm68 mm68 mm68 mm
Physical characteristics
Laser head size (W × L × H) 14)154 × 475 × 128 mm154 × 475 × 128 mm154 × 475 × 128 mm154 × 475 × 128 mm
Power supply unit (W × L × H)330 × 490 × 585 mm330 × 490 × 585 mm330 × 490 × 585 mm330 × 490 × 585 mm
Umbilical length2.5 m2.5 m2.5 m2.5 m
Operating requirements
Water consumption (max 20 °C) 15)< 8 l/min< 12 l/min< 10 l/min< 6 l/min
Ambient temperature15 – 30 °C15 – 30 °C15 – 30 °C15 – 30 °C
Relative humidity20 – 80 %
(non-condensing)
20 – 80 %
(non-condensing)
20 – 80 %
(non-condensing)
20 – 80 %
(non-condensing)
Power requirements208 – 240 V AC,
single phase, 50/60 Hz
208 – 240 V AC,
single phase, 50/60 Hz
208 – 240 V AC,
single phase, 50/60 Hz
208 – 240 V AC,
single phase, 50/60 Hz
Power consumption< 1 kVA< 1.5 kVA< 1.5 kVA< 1 kVA
Cleanliness of the roomnot worse than ISO Class 9not worse than ISO Class 9not worse than ISO Class 9not worse than ISO Class 9
ModelNL303HT-10NL303HT-20NL305HT-10NL305HT-5
  1. Due to continuous improvement, all specifications are subject to change without notice. The parameters marked typical are not specifications. They are indications of typical performance and will vary with each unit we manufacture. Unless stated otherwise all specifications are measured at 1064 nm and for basic system without options.
  2. With H300SH, H300S or H300SHC harmonic generator modules. See Harmonic Generators Selection Guide for more detailed information.
  3. With H300THC harmonic generator modules. See Harmonic Generators Selection Guide for more detailed information.
  4. With H300SH and H400FHC harmonic generator modules. See Harmonic Generators Selection Guide for more detailed information.
  5. With H300FiHC harmonic generator module. See Harmonic Generators Selection Guide for more detailed information.
  6. Averaged from pulses, emitted during 30 sec time interval.
  7. Measured over 8 hours period after 20 min warm-up when ambient temperature variation is less than ± 2 °C and humidity <± 5%.
  8. FWHM.
  9. With respect to SYNC OUT pulse.
  10. Near field (at the output aperture) TOP HAT fit is >70%.
  11. Beam diameter is measured at 1064 nm at the 1/e2 level.
  12. Full angle measured at the 1/e2 level.
  13. Beam pointing stability is evaluated as movement of the beam centroid in the focal plane of a focusing element.
  14. See Harmonic Generators Selection Guide for harmonic generators units sizes.
  15. For water cooled version. Air cooled version does not require tap water for cooling.
  16. Power requirements should be specified when ordering.
  17. 110 V AC powering is available, please inquiry for details.
  18. Required current rating can be calculated by dividing power value by mains voltage value.

Note: Laser must be connected to the mains electricity all the time. If there will be no mains electricity for longer that 1 hour then laser (system) needs warm up for a few hours before switching on.

Options

OptionFeatures
-AWAir-cooled power supply option. An adequate air conditioner should be installed in order to keep room temperature stable.
Harmonic generatorAn extensive selection of harmonic generators up to 5th harmonic.
AttenuatorAllow a smooth change of laser pulse energy, while other laser pulse parameters, such as pulse duration, jitter, pulse-to-pulse stability, beam divergence and profile remain the same.

Harmonic generators & attenuators selection guide

ModuleDescriptionOutput portsOutput pulse energy specificationsDimensions W×L×H,
mm
Extension possible?Notes
H300AAttenuator for 1064 nm beamPort 1: 1064 nm beamTransmission in 5–90% range at 1064 nm NoIntegrated into a laser head
H300SHSecond harmonic generatorPort 1: 1064, 532 nmn/d154×160×128Yes
H300S532 nm beam separatorPort 1: 532 nm
Port 2: residual 1064 nm
See NL300 specifications for 532 nm beam154×160×128NoShould be used with H300SH
H300SHCSecond harmonic generator with 532 nm beam separatorPort 1: 532 nm
Port 2: residual 1064 nm
See NL300 specifications for 532 nm beam154×210×128No
H300SHASecond harmonic generator, beam separator and attenuator for 532 nm beamPort 1: 532 nm
Port 2: residual 532 nm
Transmission in 5–90% range at 532 nm154×260×128No
H300THCThird harmonic generator with 355 nm beam separatorPort 1: 355 nm
Port 2: residual 1064 & 532 nm
See NL300 specifications for 355 nm beam154×210×128NoShould be used with H300SH
H300THAThird harmonic generator, beam separator and attenuator for 355 nm beamPort 1: 355 nm
Port 2: residual 355 nm
Transmission in 5–90% range at 355 nm154×260×128NoShould be used with H300SH
H300FHCFourth harmonic generator with 266 nm beam separatorPort 1: 266 nm
Port 2: residual 532 nm
See NL300 specifications for 266 nm beam154×260×128NoShould be used with H300SH
H300FHAFourth harmonic generator, beam separator and attenuator for 266 nm beamPort 1: 266 nm
Port 2: residual 266 nm
Transmission in 5–75% range at 266 nm154×430×128NoShould be used with H300SH
H300FiHCFifth harmonics generator with 213 nm beam separatorPort 1: 213 nm
Port 2: residual 1064, 532 & 266 nm
See NL300 specifications for 213 nm beam154×350×128No
ModuleDescriptionOutput portsOutput pulse energy specificationsDimensions W×L×H,
mm
Extension possible?Notes

Harmonic generators and attenuators

Features

  • Compact harmonic modules
  • Thermo stabilized crystals for long lifetime
  • Dichroic mirrors
  • AR coatings on crystals
  • Phase matching by mechanical adjustment
  • High conversion efficiency
  • Wide selection of different configurations
  • Smooth adjustment of output pulse energy with attenuator

Nanosecond Q-switched lasers enable simple and cost effective laser wavelength conversion to shorter wavelengths through harmonic generation. EKSPLA offers a broad selection of wavelength conversion accessories for NL300 series lasers. The purpose of this guide is to help configure available harmonic generator and attenuator modules for NL300 series lasers for optimal performance.

The harmonic module uses a modular design that allows reconfiguration of laser output for the appropriate experiment wavelength. A typical module houses a non‑linear crystal together with a set of dichroic mirrors for separating the harmonic beam from the fundamental wavelength. Nonlinear crystals used for the purpose of wavelength conversion are kept at an elevated temperature in a thermo-stabilized oven.

Two or more modules can be joined together for higher harmonic generation: attaching one extra module to a second harmonic generator allows for the generation of 3rd or 4th harmonic wavelengths. It should be noted that only modules with a single output port can be joined together: it is possible to attach a H300S module to a H300SH unit for 532 nm beam separation, or a H300FHC module for 4th harmonic generation (see detailed description below). Modules with two output ports (e.g., H300SHC) cannot be attached to extra units.

H300A attenuator

The H300A1 module is integrated into the laser head and designed to attenuate a 1064 nm.

Beam (the length of the laser head extends to 619 mm). Optical layout includes half-wave plates HWP1, HWP2 and polarizers P1, P2. Rotation of the HWP2 half-wave plate changes the polarization of the laser beam and its transmission factor via the P2 polarizer.

Optical layout of H300A attenuator.

Optical layout of H300A attenuator.

H300SH harmonic generator

H300SH module contains a SH crystal with a half-wave plate for input polarization adjustment. The output of the H300SH module has both 532 nm and 1064 nm wavelengths.

Optical layout of H300SH harmonic generator.

Optical layout of H300SH harmonic generator.

H300S harmonic separator

The H300S module has two output ports for the separation of 1064 nm and 532 nm wavelengths.

Optical layout of H300S harmonic separator.

Optical layout of H300S harmonic separator.

H300SHC harmonic generator

The most cost-effective solution for customers who need a 532 nm wavelength only, the H300 SHC module combines a SHG crystal and beam separators and has two output ports for 532 nm and 1064 nm beams.

Optical layout of H300SHC harmonic generator.

Optical layout of H300SHC harmonic generator.

H300THC harmonic generator

The H300THC module is a third harmonic generator and beam separator with two output ports for a 355 nm beam, and for a residual 532 nm + 1064 nm beam. This module should be used with the H300SH module.

Optical layout of H300THC harmonic generator.

Optical layout of H300THC harmonic generator.

H300SHA harmonic generator & attenuator

The cost-effective solution for customers who need an attenuated 532 nm wavelength, the H300SHA module combines a SHG generator with attenuator.

Optical layout of H300SHA harmonic generator & attenuator.

Optical layout of H300SHA harmonic generator & attenuator.

H300THA harmonic generator & attenuator

The cost-effective solution for customers who need an attenuated 355 nm wavelength, the H300THA module combines a THG generator with attenuator.

Optical layout of H300THA harmonic generator & attenuator.

Optical layout of H300THA harmonic generator & attenuator.

H300FHC harmonic generator

The H300FHC module is a fourth harmonic generator and beam separator for a 266 nm wavelength, with two output ports for a 266 nm beam, and for a residual 532 nm beam. This module should be used with the H300SH module.

Optical layout of H300FHC harmonic generator.

Optical layout of H300FHC harmonic generator.

H300FiHC harmonic generator

The H300FiHC module is designed to produce a 5th harmonic output. As it requires only a 1064 nm input, the unit contains SH, FH and FiH crystals together with a beam separator for a 213 nm beam.

Optical layout of H300FiHC harmonic generator.

Optical layout of H300FiHC harmonic generator.

H300FHA harmonic generator & attenuator

The cost-effective solution for customers who need an attenuated 266 nm wavelength, the H300FHA module combines a FHG generator with attenuator.

Optical layout of H300FHA harmonic generator & attenuator.

Optical layout of H300FHA harmonic generator & attenuator.

Publications

Effects of pressure and substrate temperature on the growth of Al-doped ZnO films by pulsed laser deposition

R. Kek, K. Tan, C. H. Nee, S. L. Yap, S. F. Koh, A. K. B. H. M. Arof et al., Materials Research Express 7 (1), 016414 (2020). DOI: 10.1088/2053-1591/ab62f8.

Iminothioindoxyl as a molecular photoswitch with 100 nm band separation in the visible range

M. W. Hoorens, M. Medved’, A. D. Laurent, M. Di Donato, S. Fanetti, L. Slappendel et al., Nature Communications 10 (1), 2390 (2019). DOI: 10.1038/s41467-019-10251-8.

Conversion efficiency of a laser-plasma source based on a Xe jet in the vicinity of a wavelength of 11 nm

N. I. Chkhalo, S. A. Garakhin, A. Y. Lopatin, A. N. Nechay, A. E. Pestov, V. N. Polkovnikov et al., AIP Advances 8 (10), 105003 (2018). DOI: 10.1063/1.5048288.

Optical coherence tomography (OCT) with 2 nm axial resolution using a compact laser plasma soft X-ray source

P. Wachulak, A. Bartnik, and H. Fiedorowicz, Scientific Reports 8 (1), 8494 (2018). DOI: 10.1038/s41598-018-26909-0.

Development and characterization of a laser-plasma soft X-ray source for contact microscopy

M. G. Ayele, P. W. Wachulak, J. Czwartos, D. Adjei, A. Bartnik,  Wegrzynski et al., Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 411, 35-43 (2017). DOI: 10.1016/j.nimb.2017.03.082.

XUV generation from the interaction of pico- and nanosecond laser pulses with nanostructured targets

E. F. Barte, R. Lokasani, J. Proska, L. Stolcova, O. Maguire, D. Kos et al., in X-ray Lasers and Coherent X-ray Sources: Development and Applications, A. Klisnick, and C. S. Menoni, eds. (SPIE, 2017), pp. 1024315. DOI: 10.1117/12.2265984.

EUV spectra from highly charged terbium ions in optically thin and thick plasmas

C. Suzuki, F. Koike, I. Murakami, N. Tamura, S. Sudo, E. Long et al., Journal of Physics: Conference Series 583 (1), 012007 (2015). DOI: 10.1088/1742-6596/583/1/012007.

Initiation of vacuum insulator surface high-voltage flashover with electrons produced by laser illumination

Y. E. Krasik, and J. G. Leopold, Physics of Plasmas 22 (8), 083109 (2015). DOI: 10.1063/1.4928580.

Enhancement of Laser-Induced Breakdown Spectroscopy (LIBS) Detection Limit Using a Low-Pressure and Short-Pulse Laser-Induced Plasma Process

Z. Z. Wang, Y. Deguchi, M. Kuwahara, J. J. Yan, and J. P. Liu, Applied Spectroscopy 67 (11), 1242-1251 (2013). DOI: 10.1366/13-07131.

Peculiarity of convergence of shock wave generated by underwater electrical explosion of ring-shaped wire

D. Shafer, G. R. Toker, V. T. Gurovich, S. Gleizer, and Y. E. Krasik, Physics of Plasmas 20 (5), 052702 (2013). DOI: 10.1063/1.4804342.

1

2

Content not found