Ultra-High Intensity
Unique OPCPA based laser system, providing 5 terawatts of output power at 1 kHz repetition rate has been produced by Ekspla and Light Conversion consortium. Sylos 1 named system is generating 10 fs or shorter pulses and was designed and built for Extreme Light Infrastructure – Attosecond Light Pulse Source facilities (ELI-ALPS) located in Szeged, Hungary

Ultra-high intensity laser applications span a number of scientific disciplines, such as plasma physics and fusion research, atomic molecular & optical physics, femtosecond chemistry, astrophysics, high energy physics, materials science, biology, and medicine.

Areas where a strong impact is possible include:

  • High harmonic generation and attosecond science
  • Relativistic effects in interactions with atoms, molecules and electrons
  • Ultrafast X-ray science
  • High density science
  • Fusion energy research
  • Particle accelerators
  • Thomson scattering

Publications

Found total :
9 articles, 9 selected
Product selected :
All Products
All Products
High Energy Laser Systems – Unique laser systems for extreme applications
NL120 series – SLM Q-switched Nd:YAG lasers
NL310 series – high energy Q-switched Nd:YAG lasers
APL2200 series – high energy kHz repetition rate picosecond amplifiers
APL2100 series – high energy picosecond amplifiers
APL4206 series – high energy picosecond amplifiers
NL940 series – high energy temporaly shaped nanosecond Nd:YAG lasers
ANL series – high energy temporaly shaped nanosecond Nd:YAG lasers
SYLOS 2A system – highest average power produced by a multi‑TW few‑cycle OPCPA system
Femtosecond Lasers
UltraFlux FT300 – tunable wavelength femtosecond laser system
UltraFlux FF/FT 5000 – high energy tunable wavelength femtosecond laser systems
Nanosecond Lasers
NL300 series – compact flash-lamp pumped Q-switched Nd:YAG lasers
Picosecond Lasers
SL230 series – SBS compressed picosecond DPSS Nd:YAG lasers

Development and characterization of a laser-plasma soft X-ray source for contact microscopy

Related products:  NL120 series NL310 series NL300 series SL230 series

Authors:  M.G. Ayele, P.W. Wachulak, J. Czwartos, D. Adjei, A. Bartnik, Ł. Wegrzynski, M. Szczurek, L. Pina, H. Fiedorowicz

In this work, we present a compact laser-produced plasma source of X-rays, developed and characterized for application in soft X-ray contact microscopy (SXCM). The source is based on a double stream gas puff target, irradiated with a commercially available Nd:YAG laser, delivering pulses with energy up to 740 mJ and 4 ns pulse duration at 10 Hz repetition rate. The target is formed by pulsed injection of a stream of high-Z gas (argon) into a cloud of low Z-gas (helium) by using an electromagnetic valve with a double nozzle setup. The source is designed to irradiate specimens, both in vacuum and in helium atmosphere with nanosecond pulses of soft X-rays in the ‘‘water-window” spectral range. The source is capable of delivering a photon fluence of about 1.09 x 103 photon/µm2/pulse at a sample placed in vacuum at a distance of about 20 mm downstream the source. It can also deliver a photon fluence of about 9.31 x 102 - photons/µm2/pulse at a sample placed in a helium atmosphere at the same position. The source design and results of the characterization measurements as well as the optimization of the source are presented and discussed. The source was successfully applied in the preliminary experiments on soft X-ray contact microscopy and images of microstructures and biological specimens with ~80 nm half-pitch spatial resolution, obtained in helium atmosphere, are presented.

Published: 2017.   Source: Nuclear Instruments and Methods in Physics Research B 411 (2017) 35–43

EUV spectra from highly charged terbium ions in optically thin and thick plasmas

Related products:  NL310 series NL300 series SL230 series

Authors:  C Suzuki, F Koike, I Murakami, N Tamura, S Sudo, E Long, J Sheil, E White, F O'Reilly, E Sokell, P Dunne, G O'Sullivan

We have observed extreme ultraviolet (EUV) spectra from terbium (Tb) ions in optically thin and thick plasmas for a comparative study. The experimental spectra are recorded in optically thin, magnetically conned torus plasmas and dense laser-produced plasmas (LPPs). The main feature of the spectra is quasicontinuum emission with a peak around 6.5-6.6 nm, the bandwidth of which is narrower in the torus plasmas than in the LPPs. A comparison between the two types of spectra also suggests strong opacity effects in the LPPs. A comparison with the calculated line strength distributions gives a qualitative interpretation of the observed spectra.

Published: 2015.   Source: Journal of Physics: Conference Series 583 (2015) 012007 (2015)

XUV generation from the interaction of pico- and nanosecond laser pulses with nanostructured targets

Related products:  NL310 series NL300 series SL230 series

Authors:  E. F. Barte, R. Lokasani, J. Proska, L. Stolcova, O. Maguire, D. Kos, P. Sheridan, F. O’Reilly, E. Sokell, T. McCormack, G. O’Sullivan, P. Dunne, J. Limpouch

Laser-produced plasmas are intense sources of XUV radiation that can be suitable for different applications such as extreme ultraviolet lithography, beyond extreme ultraviolet lithography and water window imaging. In particular, much work has focused on the use of tin plasmas for extreme ultraviolet lithography at 13.5 nm. We have investigated the spectral behavior of the laser produced plasmas formed on closely packed polystyrene microspheres and porous alumina targets covered by a thin tin layer in the spectral region from 2.5 to 16 nm. Nd:YAG lasers delivering pulses of 170 ps (Ekspla SL312P )and 7 ns (Continuum Surelite) duration were focused onto the nanostructured targets coated with tin. The intensity dependence of the recorded spectra was studied; the conversion efficiency (CE) of laser energy into the emission in the 13.5 nm spectral region was estimated. We have observed an increase in CE using high intensity 170 ps Nd:YAG laser pulses as compared with a 7 ns pulse.

Published: 2017.   Source: SPIE 10243, X-ray Lasers and Coherent X-ray Sources: Development and Applications, 1024315 (2017);

Conversion efficiency of a laser-plasma source based on a Xe jet in the vicinity of a wavelength of 11 nm

Related products:  NL310 series NL300 series SL230 series

Authors:  N. I. Chkhalo, S. A. Garakhin, A. Ya. Lopatin, A. N. Nechay, A. E. Pestov, V. N. Polkovnikov, N. N. Salashchenko, N. N. Tsybin, S. Yu. Zuev

We optimized the parameters of a laser-produced plasma source based on a solid-state Nd: YAG laser (λ = 1.06 nm, pulse duration 4 ns, energy per pulse up to 500 mJ, repetition rate 10 Hz, lens focus distance 45 mm, maximum power density of laser radiation in focus 9 x 1011 W/cm2) and a double-stream Xe/He gas jet to obtain a maximum of radiation intensity around 11 nm wavelength. It was shown that the key factor determining the ionization composition of the plasma is the jet density.With the decreased density, the ionization composition shifts toward a smaller degree of ionization, which leads to an increase in emission peak intensity around 11 nm.We attribute the dominant spectral feature centred near 11 nm originating from an unidentified 4d-4f transition array in Xe+10...+13 ions. The exact position of the peak and the bandwidth of the emission line were determined. We measured the dependence of the conversion efficiency of laser energy into an EUV in-band energy with a peak at 10.82 nm from the xenon pressure and the distance between the nozzle and the laser focus. The maximum conversion efficiency (CE) into the spectral band of 10–12 nm measured at a distance between the nozzle and the laser beam focus of 0.5 mm was CE = 4.25 ± 0.30%. The conversion efficiencies of the source in-bands of 5 and 12 mirror systems at two wavelengths of 10.8 and 11.2 nm have been evaluated; these efficiencies may be interesting for beyond extreme ultraviolet lithography.

Published: 2018.   Source: AIP Advances 8, 105003 (2018)

53 W average power CEP-stabilized OPCPA system delivering 5.5 TW few cycle pulses at 1 kHz repetition rate

Related products:  UltraFlux FT300 UltraFlux FF/FT 5000 APL2200 series APL4206 series SYLOS 2A system

Authors:  R. Budriūnas, T. Stanislauskas, J. Adamonis, A. Aleknavičius, G. Veitas, D. Gadonas, S. Balickas, A. Michailovas, A. Varanavičius

We present a high peak and average power optical parametric chirped pulse amplification system driven by diode-pumped Yb:KGW and Nd:YAG lasers running at 1 kHz repetition rate. The advanced architecture of the system allows us to achieve >53 W average power combined with 5.5 TW peak power, along with sub-220 mrad CEP stability and sub-9 fs pulse duration at a center wavelength around 880 nm. Broadband, background-free, passively CEP stabilized seed pulses are produced in a series of cascaded optical parametric amplifiers pumped by the Yb:KGW laser, while a diode-pumped Nd:YAG laser system provides multi-mJ pump pulses for power amplification stages. Excellent stability of output parameters over 16 hours of continuous operation is demonstrated.

Published: 2017.   Source: Optical Society of America | Vol. 25, No. 5 | 6 Mar 2017 | OPTICS EXPRESS 5799

Spectral pulse shaping of a 5  Hz, multi-joule, broadband optical parametric chirped pulse amplification frontend for a 10  PW laser system

Related products:  NL940 series

Authors:  F. Batysta, R. Antipenkov, T. Borger, A. Kissinger, J. T. Green, R. Kananavičius, G. Chériaux, D. Hidinger, J. Kolenda, E. Gaul, B. Rus, T. Ditmire

We present a broadband optical parametric chirped pulse amplification (OPCPA) system delivering 4 J pulses at a repetition rate of 5 Hz. It will serve as a frontend for the 1.5 kJ, <150  fs, 10 PW laser beamline currently under development by a consortium of National Energetics and Ekspla. The spectrum of the OPCPA system is precisely controlled by arbitrarily generated waveforms of the pump lasers. To fully exploit the high flexibility of the frontend, we have developed a 1D model of the system and an optimization algorithm that predicts suitable pump waveform settings for a desired output spectrum. The OPCPA system is shown to have high efficiency, a high-quality top-hat beam profile, and an output spectrum demonstrated to be shaped consistently with the theoretical model.

Published: 2018.   Source: Optics Letters Vol. 43, Issue 16, pp. 3866-3869 (2018)

Characterization and calibration of the Thomson scattering diagnostic suite for the C-2W field-reversed configuration experiment

Related products:  ANL series

Authors:  A. Ottaviano, T. M. Schindler, K. Zhai, E. Parke, E. Granstedt, M. C. Thompson and the TAE Team

The new C-2W Thomson scattering (TS) diagnostic consists of two individual subsystems for monitoring electron temperature (Te) and density (ne): one system in the central region is currently operational, and the second system is being commissioned to monitor the open field line region. Validating the performance of the TS’s custom designed system components and unique calibration of the detection system and diagnostic as a whole is crucial to obtaining high precision Te and ne profiles of C-2W’s plasma. The major components include a diode-pumped Nd:YAG laser which produces 35 pulses at up to 20 kHz, uniquely designed collection lenses with a fast numerical aperture, and uniquely designed polychromators with filters sets to optimize a Te ranging from 10 eV to 2 keV. This paper describes the design principles and techniques used to characterize the main components of the TS diagnostic on C-2W, as well as the results of Rayleigh scattering calibrations performed for the whole system response.

Published: 2018.   Source: Review of Scientific Instruments 89, 10C120 (2018)

Thomson scattering systems on C-2W field-reversed configuration plasma experiment

Related products:  ANL series

Authors:  K. Zhai, T. Schindler, A. Ottaviano, H. Zhang, D. Fallah, J. Wells, E. Parke, M. C. Thompson and the TAE Team

TAE Technologies’ newly constructed C-2W experiment aims to improve the ion and electron temperature in a sustained field-reversed configuration plasma. A suite of Thomson scattering systems has been designed and constructed for electron temperature and density profile measurements. The systems are designed for electron densities of 1×1012 cm-3 to 2×1014 cm-3 and temperature ranges from 10 eV to 2 keV. The central system will provide profile measurements of Te and ne at 16 radial locations from r = -9 cm to r = 64 cm with a temporal resolution of 20 kHz for 4 pulses or 1 kHz for 30 pulses. The jet system will provide profile measurements of Te and ne at 5 radial locations in the open field region from r = -5 cm to r = 15 cm with a temporal resolution of 100 Hz. The central system and its components have been characterized, calibrated, installed and commissioned. A maximum-likelihood algorithm has been applied for data processing and analysis.

Published: 2018.   Source: Review of Scientific Instruments 89, 10C118 (2018)

Emission properties of ns and ps laser-induced soft x-ray sources using pulsed gas jets

Related products:  SL230 series APL2100 series

Authors:  M. Müller, F.-Ch. Kühl, P. Großmann, P. Vrba, K, Mann

The influcence of the pulse duration on the emission characteristics of nearly debris-free laser-induced plasmas in the soft x-ray region (λ ≈1-5 nm) was investigated, using six different target gases from a pulsed jet. Compared to ns pulses of the same energy, a ps laser generates a smaller, more strongly ionized plasma, being about 10 times brighter than the ns laser plasma. Moreover, the spectra are considerably shifted towards shorter wavelengths. Electron temperatures and densities of the plasma are obtained by comparing the spectra with model calculations using a magneto-hydrodynamic code.

Published: 2013.   Source: Opt. Express 21, 12831-12842 (2013)