Infrared Multiple Photon Dissociation Spectroscopy of Hydrated Cobalt Anions Doped with Carbon Dioxide CoCO2(H2O)n, n=1–10, in the C−O Stretch Region

We investigate anionic [Co,CO2,nH2O] clusters as model systems for the electrochemical activation of CO2 by infrared multiple photon dissociation (IRMPD) spectroscopy in the range of 1250–2234 cm−1 using an FT-ICR mass spectrometer. We show that both CO2 and H2O are activated in a significant fraction of the [Co,CO2,H2O] clusters since it dissociates by CO loss, and the IR spectrum exhibits the characteristic C−O stretching frequency. About 25 % of the ion population can be dissociated by pumping the C−O stretching mode. With the help of quantum chemical calculations, we assign the structure of this ion as Co(CO)(OH)2. However, calculations find Co(HCOO)(OH) as the global minimum, which is stable against IRMPD under the conditions of our experiment. Weak features around 1590–1730 cm−1 are most likely due to higher lying isomers of the composition Co(HOCO)(OH). Upon additional hydration, all species [Co,CO2,nH2O], n≥2, undergo IRMPD through loss of H2O molecules as a relatively weakly bound messenger. The main spectral features are the C−O stretching mode of the CO ligand around 1900 cm−1, the water bending mode mixed with the antisymmetric C−O stretching mode of the HCOO ligand around 1580–1730 cm−1, and the symmetric C−O stretching mode of the HCOO ligand around 1300 cm−1. A weak feature above 2000 cm−1 is assigned to water combination bands. The spectral assignment clearly indicates the presence of at least two distinct isomers for n ≥2.