PhotoSonus T

High Energy Table-Top Tunable Wavelength Lasers for Photoacoustic Imaging

PhotoSonus T is desktop version of high energy tunable laser source for photo-acoustic imaging. It features high output energies for imaging larger volumes of tissue.

Download datasheet
PhotoSonus T
Overview

Features

  • Hands-free, automated wavelength tuning from 330 to 2600 nm
  • Ultra-wide OPO signal tuning range from 660 to 1320 nm
  • Up to 230 mJ in range 660 – 2600 nm,
    35 mJ in range 330 – 660 nm
  • Narrow linewidth across tuning range
  • 3 – 5 ns pulse duration
  • Remote control via key pad or PC
  • Separate output port for 532 nm beam. Output for 1064 nm is optional
  • OPO pump energy monitoring
  • Fast wavelength switching within entire signal or idler ranges

Applications

  • Photoacoustic imaging
  • Flash photolysis
  • Photobiology
  • Remote sensing
  • Non-linear spectroscopy

Description

PhotoSonus T series tunable laser seamlessly integrates in a compact housing a nanosecond optical parametric oscillator and Nd:YAG Q-switched laser.

Three models with different output pulse energy values and different repetition rates are offered. The most powerful model has more than 230 mJ pulse energy. Narrow linewidth (<10 cm⁻¹) is nearly constant trough almost whole tuning range, which makes laser suitable for many spectroscopy application.

The device is controlled from the remote keypad or PC using LabVIEW™ drivers that are supplied with the system. The remote pad features a backlit display that is easy to read even while wearing laser safety glasses.

System is designed for easy and cost-effective maintenance. Replacement of flashlamps can be done without misalignment of the laser cavity and deterioration of laser performance. OPO pump energy monitoring system helps to increase lifetime of the optical components.

Benefits

  • High pulse energy (up to 230 mJ) is highly beneficial for photoacoustics imaging applications
  • Superior tuning resolution (1 – 2 cm⁻¹) allows recording of high quality spectra
  • High integration level saves space in the laboratory
  • Flashlamps replacement without misalignment of the laser cavity saves on maintenance costs
  • In-house design and manufacturing of complete systems, including pump lasers, guarantees on-time warranty and post warranty services and spares supply
  • Variety of control interfaces: USB, RS232, optional LAN and WLAN ensures easy control and integration with other equipment
  • Attenuator and fiber bundle coupling options facilitate incorporation of PhotoSonus T systems into various experimental environments

Specifications

ModelPhotoSonus T-10PhotoSonus T-20PhotoSonus T+
OPO 1)
Wavelength range
Signal660 – 1320 nm660 – 1320 nm660 – 1064 nm 2)
Idler1065 – 2600 nm1065 – 2600 nm1065 – 2600 nm
SH (optional)330 – 660 nm330 – 660 nm330 – 530 nm
(330 – 659 nm) 3)
Output max pulse energy 4)
OPO150 mJ130 mJ230 mJ
SH25 mJ21 mJ35 mJ
Linewidth 5)< 15 cm‑1< 15 cm‑1< 15 cm‑1
Tuning resolution 6)
Signal1 cm‑11 cm‑11 cm‑1
Idler1 cm‑11 cm‑11 cm‑1
SH2 cm‑12 cm‑12 cm‑1
Pulse duration 7)3 – 5 ns3 – 5 ns3 – 5 ns
Typical beam diameter 8)7 mm7 mm9 mm
Typical beam divergence 9)< 2 mrad< 2 mrad< 2 mrad
Polarization
Signal beamhorizontalhorizontalhorizontal
Idler beamverticalverticalvertical
SH beamverticalverticalvertical
Pump laser 10)
Pump wavelength532 nm532 nm532 nm
Pulse duration4 – 6 ns4 – 6 ns4 – 6 ns
Beam quality”Hat-Top” in near field.
Close to Gaussian in far field
”Hat-Top” in near field.
Close to Gaussian in far field
”Hat-Top” in near field.
Close to Gaussian in far field
Beam divergence< 0.6 mrad< 0.6 mrad< 0.6 mrad
Pulse energy stability (StdDev)< 2.5 %< 2.5 %< 2.5 %
Pulse repetition rate10 Hz20 Hz10 Hz
Physical characteristics
Unit size (W × L × H mm)456 × 821 × 270 mm456 × 821 × 270 mm456 × 821 × 270 mm
Power supply size (W × L × H)330 × 490 × 585 mm330 × 490 × 585 mm330 × 490 × 585 mm
Umbilical length2.5 m2.5 m2.5 m
Operating requirements
Water consumption (max 20 °C) 11)< 10 l/min< 10 l/min< 10 l/min
Room temperature18 – 27 °C18 – 27 °C18 – 27 °C
Relative humidity20 – 80 %
(non-condensing)
20 – 80 %
(non-condensing)
20 – 80 %
(non-condensing)
Power requirements 8)200 – 240 VAC,
single phase, 50/60 Hz
200 – 240 VAC,
single phase, 50/60 Hz
200 – 240 VAC,
single phase, 50/60 Hz
Power consumption< 1.5 kVA< 2.5 kVA< 2.5 kVA
Cleanliness of the roomnot worse than ISO Class 9not worse than ISO Class 9not worse than ISO Class 9
ModelPhotoSonus T-10PhotoSonus T-20PhotoSonus T+
  1. Due to continuous improvement, all specifications are subject to change without notice. The parameters marked typical are not specifications. They are indications of typical performance and will vary with each unit we manufacture. Unless stated otherwise all specifications are measured at 700 nm and for basic system without options.
  2. Optional signal extended range: 660 – 1320 nm.
  3. When extended signal range is selected.
  4. See tuning curves for typical outputs at different wavelengths.
  5. At 700 nm or higher wavelengths.
  6. When wavelength is controlled from PC. When wavelength is controlled from keypad, tuning resolution is 0.1 nm for signal,
  7. 1 nm for idler and 0.5 nm for SH.
  8. FWHM measured with photodiode featuring 1 ns rise time and 300 MHz bandwidth oscilloscope.
  9. Beam diameter is measured at 700 nm at the 1/e2 level and can vary depending on the pump pulse energy.
  10. Full angle measured at the FWHM level at 700 nm.
  11. Separate output port for the 532 nm beam is standard. Output for 1064 nm beam is optional. Pump laser output will be optimized for the best OPO operation and specification may vary with each unit we manufacture.
  12. Air cooled power supply is available as option.
  13. Mains voltage should be specified when ordering.

Note: Laser must be connected to the mains electricity all the time. If there will be no mains electricity for longer that 1 hour then laser (system) needs warm up for a few hours before switching on.

Ordering information of PhotoSonus T.

Ordering information of PhotoSonus T.

Options

OptionFeatures
-SHEfficient second harmonic generator for 330 – 660 nm range.
-ERExtended OPO signal range (for T+ model only).
-FBCFiber bundle coupled output.
-ATTNPulse energy attenuator.
-HAdditional output for 1064 nm pump wavelength.
-EMOPO energy meter.
-AWWater-air cooled power supply.

Publications

A three-dimensional photoacoustic and ultrasound automated breast volume scanner (PAUS-ABVS) for breast cancer patients

S. Park, M. Sung, H. Kim, K. J. Lee, E. Park, J. Ahn et al., Science Advances 11 (48), eadz8585 (2025). DOI: 10.1126/sciadv.adz8585.

Au/Fe/Au trilayer nanodiscs as theranostic agents for magnet-guided photothermal, chemodynamic therapy and ferroptosis with photoacoustic imaging

E. S. Lee, S. Choi, J. Lee, J. M. Shin, J. Kim, J. Wi et al., Chemical Engineering Journal 505, 159137 (2025). DOI: 10.1016/j.cej.2024.159137.

Localized measurement of ultrasonic waves using a Fabry–Perot sensor illuminated by a Bessel beam

D. M. Marques, O. Sheppard, E. Z. Zhang, P. R. T. Munro, and J. A. Guggenheim, Appl. Opt. 64 (10), 2366-2373 (2025). DOI: 10.1364/AO.548048.

Three-Dimensional Whole-Body Small Animal Photoacoustic Tomography Using a Multi-View Fabry-Perot Scanner

O. Ogunlade, R. Ellwood, E. Zhang, B. T. Cox, and P. Beard, IEEE Transactions on Medical Imaging 44 (4), 1922-1930 (2025). DOI: 10.1109/TMI.2024.3522220.

Analysis of characteristics and photoacoustic imaging performance of exogenous contrast agents

J. Wi, J. Kim, M. Y. Kim, S. Choi, H. J. Jung, C. Kim et al., in Photons Plus Ultrasound: Imaging and Sensing 2024, A. A. Oraevsky, and L. V. Wang, eds. (SPIE, 2024), pp. 1284212. DOI: 10.1117/12.3000864.

Exploring salinity induced adaptations in marine diatoms using advanced photonic techniques

J. Cvjetinovic, Y. D. Bedoshvili, N. A. Davidovich, E. G. Maksimov, E. S. Prikhozhdenko, D. A. Todorenko et al., Scientific Reports 14 (1), 32007 (2024). DOI: 10.1038/s41598-024-83640-9.

Hybrid Photoacoustic Ultrasound Imaging System for Cold-Induced Vasoconstriction and Vasodilation Monitoring

R. Zhang, X. Li, G. Balasundaram, B. Li, Y. Qi, A. Santosa et al., IEEE Transactions on Biomedical Engineering 71 (2), 712-716 (2024). DOI: 10.1109/TBME.2023.3301013.

Video-rate endocavity photoacoustic/harmonic ultrasound imaging with miniaturized light delivery

D. Oh, H. Kim, M. Sung, and C. Kim, Journal of Biomedical Optics 29 (S1), S11528 (2024). DOI: 10.1117/1.JBO.29.S1.S11528.

An Investigation of Signal Preprocessing for Photoacoustic Tomography

I. Huen, R. Zhang, R. Bi, X. Li, M. Moothanchery, and M. Olivo, Sensors 23 (1), 510 (2023). DOI: 10.3390/s23010510.

Bimetallic Hyaluronate-Modified Au@Pt Nanoparticles for Noninvasive Photoacoustic Imaging and Photothermal Therapy of Skin Cancer

H. H. Han, S. Kim, J. Kim, W. Park, C. Kim, H. Kim et al., ACS Applied Materials & Interfaces 15 (9), 11609-11620 (2023). DOI: 10.1021/acsami.3c01858.

1

2 3 4 5

Content not found