PhotoSonus X

High Output Power DPSS Tunable Laser for Photoacoustic Imaging

Having high output energy, a broad wavelength tuning range, up to 100 Hz repetition rate and fast wavelength switching makes it a perfect photoacoustic imaging laser source for gaining high-resolution images and ensuring high data acquisition rate.

Download datasheet
PhotoSonus X
Overview

Features

  • Ultra-wide signal tuning range from 650 to 1300 nm
  • Fully motorized wavelength tuning
  • Fast wavelength switching
  • Externally triggerable
  • High, up to 90 mJ pulse energy from OPO
  • 100 Hz or 50 Hz pulse repetition rate
  • Certification ready
  • Quiet operation < 60 dB
  • Integrated DPSS pump laser and OPO into a single housing
  • Fiber bundle or fiber
  • Signal and idler through the same output (optional)
  • Integrated energy meter (optional)
  • Electromechanical output shutter with laser self-test capability

Description

PhotoSonus X is a perfect solution for photoacoustic imaging in pre-clinical and clinical use and when fast sample scanning is required.

Having high output energy of up to 90 mJ at the peak, a broad wavelength tuning range from 650 to 2600 nm, high pulse repetition rate up to 100 Hz and fast wavelength switching makes it a perfect photoacoustic imaging source for gaining high-resolution images and ensuring high data acquisition rate. Moreover, being built on a diode pumped solid-state laser platform, PhotoSonus X assures significantly quieter operation (< 60 dB) compared with flash-lamp pumped lasers, which is very beneficial for clinical use.

Diode pumped laser technology and well-engineered system design ensures high reliability and low-cost system operation. PhotoSonus X output can be coupled with almost any type of fiber bundle.

With additional options of an internal energy meter and electromechanical shutter with laser self-test capability, PhotoSonus X can be ready for certification in clinical photoacoustic applications.

Specifications

ModelPhotoSonus X-50PhotoSonus X-100
OPO 1)
Wavelength range
Signal650 – 1300 nm650 – 1300 nm
Idler (optional)1065 – 2600 nm1065 – 2600 nm
OPO output MAX pulse energy 2)> 90 mJ> 50 mJ
Pulse repetition rate 3)50 Hz100 Hz
Scanning step
Signal0.1 nm0.1 nm
Idler1 nm1 nm
Pulse duration 4)2 – 5 ns2 – 5 ns
Signal linewidth 5)< 15 cm‑1< 10 cm‑1
Typical signal beam diameter (1/e2) 6)6 ± 1 mm6 ± 1 mm
Control interfacesLAN, RS232LAN, RS232
Physical characteristics
CoolingClosed loop air-water cooled 7)Closed loop air-water cooled 7)
Unit size (W × L × H mm)551 × 400 × 162 mm551 × 400 × 162 mm
Power supply size (W × L × H)483 × 390 × 140 mm483 × 390 × 140 mm
Umbilical length0.5 m0.5 m
Operating requirements
Room temperature18 – 27 °C18 – 27 °C
Relative humidity20 – 80 %
(non-condensing)
20 – 80 %
(non-condensing)
Power requirements 8)100 – 240 V AC,
single phase, 50/60 Hz
100 – 240 V AC,
single phase, 50/60 Hz
Power consumption< 2 kW< 2 kW
ModelPhotoSonus X-50PhotoSonus X-100
  1. Due to continuous improvement, all specifications are subject to change without notice. The parameters marked typical are not specifications. They are indications of typical performance and will vary with each unit we manufacture. Unless stated otherwise all specifications are measured at 700 nm.
  2. Measured at the free space output. See tuning curves for typical energy levels at different wavelengths.
  3. Other fixed pulse repetiton rates are available upon request.
  4. FWHM measured with photodiode featuring 1 ns rise time and 300 MHz bandwidth oscilloscope.
  5. At 700 nm or higher wavelength.
  6. Measured at the free space output at 700 nm wavelength.
  7. Using external chiller.

Note: Laser must be connected to the mains electricity all the time. If there will be no mains electricity for longer that 1 hour then laser (system) needs warm up for a few hours before switching on.

Ordering information of PhotoSonus X

Ordering information of PhotoSonus X.

Publications

A fast all-optical 3D photoacoustic scanner for clinical vascular imaging

N. T. Huynh, E. Zhang, O. Francies, F. Kuklis, T. Allen, J. Zhu et al., Nature Biomedical Engineering (2024). DOI: 10.1038/s41551-024-01247-x.

An Investigation of Signal Preprocessing for Photoacoustic Tomography

I. Huen, R. Zhang, R. Bi, X. Li, M. Moothanchery, and M. Olivo, Sensors 23 (1), 510 (2023). DOI: 10.3390/s23010510.

Bimetallic Hyaluronate-Modified Au@Pt Nanoparticles for Noninvasive Photoacoustic Imaging and Photothermal Therapy of Skin Cancer

H. H. Han, S. Kim, J. Kim, W. Park, C. Kim, H. Kim et al., ACS Applied Materials & Interfaces 15 (9), 11609-11620 (2023). DOI: 10.1021/acsami.3c01858.

Characterizing a photoacoustic and fluorescence imaging platform for preclinical murine longitudinal studies

W. R. Thompson, H. F. Brecht, V. Ivanov, A. M. Yu, D. S. Dumani, D. J. Lawrence et al., Journal of Biomedical Optics 28 (3), 036001 (2023). DOI: 10.1117/1.JBO.28.3.036001.

Deep Learning Enhances Multiparametric Dynamic Volumetric Photoacoustic Computed Tomography In Vivo (DL-PACT)

S. Choi, J. Yang, S. Y. Lee, J. Kim, J. Lee, W. J. Kim et al., Advanced Science 10 (1), 2202089 (2023). DOI: 10.1002/advs.202202089.

Fast photoacoustic imaging technology for deep structure information of finger

T. Meng, H. Li, and Y. Liu, in Ninth Symposium on Novel Photoelectronic Detection Technology and Applications, J. Chu, W. Liu, and H. Xu, eds. (SPIE, 2023), pp. 126176E. DOI: 10.1117/12.2666706.

Fully three-dimensional sound speed-corrected multi-wavelength photoacoustic breast tomography

M. Dantuma, F. Lucka, S. C. Kruitwagen, A. Javaherian, L. Alink, R. P. P. van Meerdervoort et al., https://arxiv.org/abs/2308.06754. DOI: 10.48550/arXiv.2308.06754.

LED-based Schlieren system for full-field photoacoustic wave acquisition and image reconstruction

Y. Ojeda‑Morales, D. Hernandez‑Lopez, and G. Martínez‑Ponce, Opt. Continuum 2 (9), 2007-2016 (2023). DOI: 10.1364/OPTCON.498143.

Microfluidic Fabrication of Highly Efficient Hydrogel Optical Fibers for In Vivo Fiber-Optic Applications

G. Fitria, M. Kwon, H. Lee, A. Singh, K. Yoo, Y. Go et al., Advanced Optical Materials 11 (18), 2300453 (2023). DOI: 10.1002/adom.202300453.

Photoacoustic tomography with a model-based approach involving realistic detector properties

P. Warbal, and R. K. Saha, Results in Optics 13, 100528 (2023). DOI: 10.1016/j.rio.2023.100528.

1

2 3 4

Content not found