NT230 series

High Energy Broadly Tunable DPSS Lasers

NT230 series tunable wavelength laser offers hands free, no-gap tuning from 192 to 2600 nm. from the one box.  With its 100 Hz repetition rate, the NT230 series laser establishes itself as a versatile tool for many laboratory applications, as laser induced fluorescence, flash photolysis, photobiology, metrology, remote sensing.

Download datasheet
NT230
Overview

Features

  • Customers recognized reliability
  • Two years warranty
  • Integrates DPSS pump laser and OPO into a single housing
  • Hands-free no-gap wavelength tuning from 192 to 2600 nm*
  • Up to 15 mJ pulse energy from OPO
  • Up to 100 Hz pulse repetition rate
  • Up to 2 mJ output pulse energy in UV
  • Less than 5 cm⁻¹ linewidth
  • 2 – 5 ns pulse duration
  • Electromechanical output shutters
  • Transportation handles
  • 355 nm & 1064 nm laser outputs
  • 532 nm output (optional)
  • Remote control via key pad or PC

* Automatic wavelength scan is programmable

Description

NT230 series lasers deliver high up to 10 mJ energy pulses at 100 Hz pulse repetition rate, tunable over a broad spectral range. Integrated into a single compact housing, the diode pumped Q-switched Nd:YAG laser and optical parameteric oscillator (OPO) offers hands free, no-gap tuning from 192 to 2600 nm. With its 100 Hz repetition rate, the NT230 series laser establishes itself as a versatile tool for many laboratory applications, as laser induced fluorescence, flash photolysis, photobiology, metrology, remote sensing, etc.

Due to the innovative diode pumped design, NT230 series lasers feature maintenance-free laser operation for an extended period of time and improved stability (compared with flash-lamp pumped counterparts).

NT230 series systems can be controlled from a remote control pad or/and a computer. The control pad allows easy control of all parameters and features on a backlit system display that is easy to read even with laser safety eyewear.

Typical output pulse energy of NT230 laser.

Typical output pulse energy of NT230 laser.

Benefits

  • Hands-free wavelength tuning – no need for physical intervention
  • The system is widely tunable; 192 – 2600 nm and delivers high pulse energy (up to 15 mJ) which allows investigation of an extensive range of materials
  • High repetition rate (up to 100 Hz) and output power enable fast data collection and intensive excitation of materials
  • Narrow linewidth (down to 3 cm‑1) and superior tuning resolution (1 – 2 cm‑1) allow recording of high quality spectra
  • High integration level saves valuable space in the laboratory
  • Diode pumping reduces maintenance frequency
  • Automatic electromechanical output shutters ensure high level of safety
  • User friendly extendable handles ease transportation and repositioning of laser
  • In-house design and manufacturing of complete systems, including pump lasers, guarantees on-time warranty and post warranty services and spares supply
  • Variety of control interfaces: USB, RS232, LAN and WLAN ensures easy control and integration with other equipment
  • Attenuator and fiber coupling options facilitate incorporation of NT230 systems into various experimental environments

Applications

  • Laser-induced fluorescence
  • Flash photolysis
  • Photobiology
  • Remote sensing
  • Metrology
  • Non-linear spectroscopy
  • Photo acoustic imaging

Specifications

ModelNT230-50NT230-100
OPO specifications 1)
Wavelength range
Signal405 – 710 nm405 – 710 nm
Idler710 – 2600 nm710 – 2600 nm
SH and SF210 – 405 nm 2)210 – 405 nm 2)
DUV192 – 210 nm192 – 210 nm
Pulse energy 3)
OPO15 mJ10 mJ
SH and SF 4)1.8 mJ1.3 mJ
DUV0.4 mJ0.27 mJ
Pulse repetition rate50 Hz100 Hz
Pulse duration 5)2 – 5 ns2 – 5 ns
Linewidth 6)< 5 cm‑1< 5 cm‑1
Minimal tuning step 7)
Signal1 cm‑11 cm‑1
Idler1 cm‑11 cm‑1
SH / SF / DUV2 cm‑12 cm‑1
Polarization
Signalhorizontalhorizontal
Idlerverticalvertical
SH / SF horizontalhorizontal
DUVverticalvertical
OPO beam divergence 8)< 2 mrad< 2 mrad
Typical beam diameter 9)5 mm5 mm
Pump laser
Pump wavelength 10)355 nm355 nm
Typical pump pulse energy 11)50 mJ35 mJ
Pulse duration2 – 5 ns2 – 5 ns
Physical characteristics
Unit size (W × L × H)451 × 705 × 172 mm451 × 705 × 172 mm
Power supply size (W × L × H)449 × 376 × 140 mm449 × 376 × 140 mm
External chillerinquireinquire
Umbilical length2.5 m2.5 m
Operating requirements
Coolingexternal chillerexternal chiller
Room temperature18 – 30 °C18 – 30 °C
Relative humidity20 – 80 % (non-condensing)20 – 80 % (non-condensing)
Power requirements100 – 240 V AC, single phase, 50/60 Hz100 – 240 V AC, single phase, 50/60 Hz
Power consumption< 1.8 kW< 1.8 kW
Cleanliness of the roomnot worse than ISO Class 9not worse than ISO Class 9
ModelNT230-50NT230-100
  1. Due to continuous improvement, all specifica­tions are subject to change. Parameters marked typical are illustrative. They are indications of typical performance and will vary with each unit we manufacture. Unless stated otherwise, all specifications are measured at 450 nm and for basic system without options.
  2. Separate –SH and –SF options are available.
  3. See tuning curves for typical outputs at other wavelengths.
  4. Measured at 260 nm wavelength.
  5. FWHM measured with photodiode featuring 1 ns rise time and 300 MHz bandwidth oscilloscope.
  6. Linewidth is <8 cm‑1 for 210 – 405 nm range.
  7. When wavelength is controlled from PC. When wavelength is controlled from keypad, tuning resolution is 0.1 nm for signal, 1 nm for idler and 0.05 nm for SH, SF and DUV.
  8. Full angle measured at the FWHM level at 450 nm.
  9. Beam diameter is measured at 450 nm at the 1/e2 level and can vary depending on the pump pulse energy.
  10. Separate output port for the fundamental and 3rd harmonic beam is standard. Output ports for other harmonic are optional.
  11. The pump laser pulse energy will be optimized for best OPO performance and can vary with each unit we manufacture.

Note: Laser must be connected to the mains electricity all the time. If there will be no mains electricity for longer that 1 hour then laser (system) needs warm up for a few hours before switching on.

Accessories and optional items

OptionFeatures
-SHTuning range extension in UV range (210 – 405 nm) by second harmonic generation
-SFTuning range extension in 300 – 405 nm range by sum-frequency generation
-SH/SFTuning range extension in 210 – 405 nm range by combining second harmonic and sum-frequency generator outputs for maximum possible pulse energy
-DUVDeep UV option for 192 – 210 nm range output
-2H532 nm output
-FCFiber coupled output in 300 – 2000 nm range
-ATTNAttenuator
-SCUSpectral filtering accessory for improved spectral purity of pulses
-FWSFast wavelength scanning option
OptionFeatures

Publications

Electronic spectroscopy and nanocalorimetry of hydrated magnesium ions [Mg(H2O)n]+, n = 20–70: spontaneous formation of a hydrated electron?

T. Taxer, M. Ončák, E. Barwa, C. van der Linde, and M. K. Beyer, Faraday Discuss. 217, 584-600 (2019). DOI: 10.1039/C8FD00204E.

Luminescence spectroscopy of oxazine dye cations isolated in vacuo

C. Kjær, and S. B. Nielsen, Phys. Chem. Chem. Phys. 21, 4600-4605 (2019). DOI: 10.1039/C8CP07340F.

Photochemistry and spectroscopy of small hydrated magnesium clusters Mg+(H2O)n, n = 1–5

M. Ončák, T. Taxer, E. Barwa, C. van der Linde, and M. K. Beyer, The Journal of Chemical Physics 149 (4), 044309 (2018). DOI: 10.1063/1.5037401.

Photodissociation of Sodium Iodide Clusters Doped with Small Hydrocarbons

N. K. Bersenkowitsch, M. Ončák, J. Heller, C. van der Linde, and M. K. Beyer, Chemistry – A European Journal 24 (47), 12433-12443 (2018). DOI: 10.1002/chem.201803017.

Capturing an initial intermediate during the P450nor enzymatic reaction using time-resolved XFEL crystallography and caged-substrate

T. Tosha, T. Nomura, T. Nishida, N. Saeki, K. Okubayashi, R. Yamagiwa et al., Nature Communications 1 (8), 1585 (2017). DOI: 10.1038/s41467-017-01702-1.

Hybrid Photoacoustic/Ultrasound tomograph for real time finger imaging

M. Oeri, W. Bost, N. Sénégond, S. Tretbar, and M. Fournelle, Ultrasound in Med. & Biol. 43 (10), 2200-2212 (2017). DOI: 10.1016/j.ultrasmedbio.2017.05.015.

Photodissociation spectroscopy of protonated leucine enkephalin

A. Herburger, C. van der Linde, and M. K. Beyer, Phys. Chem. Chem. Phys. 19, 10786-10795 (2017). DOI: 10.1039/C6CP08436B.

A cylindrical quadrupole ion trap in combination with an electrospray ion source for gas-phase luminescence and absorption spectroscopy

M. H. Stockett, J. Houmøller, K. Støchkel, A. Svendsen, and S. Brøndsted Nielsen, Review of Scientific Instruments 87 (5), 053103 (2016). DOI: 10.1063/1.4948316.

Content not found