Scanning SFG Spectrometer
datasheet
- Characterisation of vibrational bonds of molecules at surfaces or interfaces
- Intrinsically surface specific
- High spectral resolution
- Wide range of accessible (molecular) vibrations: 625 – 4300 cm⁻¹
- Characterisation of vibrational bonds of molecules at surfaces or interfaces
- Intrinsically surface specific
- High spectral resolution
- Wide range of accessible (molecular) vibrations: 625 – 4300 cm⁻¹
Sum Frequency Generation (SFG) Vibrational Spectroscopy
Advantages
- Sensitive and selective to the orientation of molecules in the surface layer
- Intrinsically surface specific
- Selective to adsorbed species
- Sensitive to submonolayer of molecules
- Applicable to all interfaces accessible to light
- Nondestructive
- Capable of high spectral and spatial resolution
Applications
- Investigation of surfaces and interfaces of solids, liquids, polymers, biological membranes and other systems
- Studies of surface structure, chemical composition and molecular orientation
- Remote sensing in hostile environment
- Investigation of surface reactions under real atmosphere, catalysis, surface dynamics
- Studies of epitaxial growth, electrochemistry, material and environmental problems
Sum Frequency Generation Vibrational Spectroscopy (SFG-VS) is powerful and versatile method for in-situ investigation of surfaces and interfaces. In SFG-VS experiment a pulsed tunable infrared IR (ωIR) laser beam is mixed with a visible VIS (ωVIS) beam to produce an output at the sum frequency (ωSFG = ωIR + ωVIS). SFG is second order nonlinear process, which is allowed only in media without inversion symmetry. At surfaces or interfaces inversion symmetry is necessarily broken, that makes SFG highly surface specific. As the IR wavelength is scanned, active vibrational modes of molecules at the interface give a resonant contribution to SF signal. The resonant enhancement provides spectral information on surface characteristic vibrational transitions.
Vibrational sum frequency generation (SFG) spectroscopy holds several important advantages over traditional spectroscopy methods for the molecular level analysis of interfaces, including (i) surface sensitivity, (ii) vibrational specificity, and (iii) the possibility to extract detailed information on the ordering and orientation of molecular groups at the interface by analysis of polarization-dependent SFG spectra.
Comparison of Narrowband and Broadband SFG Spectrometers
Narrowband picosecond scanning SFG spectrometer
In order to get SFG spectrum during measurement wavelength of narrowband mid-IR pulse is changed point-by-point throughout the range of interest. Narrowband SFG signal is recorded by the time-gated photomultiplier. Energy of each mid-IR, VIS and SFG pulse is measured. After the measurement, the SFG spectrum can be normalised according to IR and VIS energy. Spectral resolution is determined by the bandwidth of the mid-IR light source. The narrower mid-IR pulse bandwidth, the better the SFG spectral resolution. Separate vibrational modes are excited during the measurement.
Broadband femtosecond SFG spectrometer
A broadband mid-IR pulse is mixed with a narrowband VIS pulse. The result is broadband SFG spectrum which is recorded using a monochromator and a sensitive CCD camera. The full spectrum is acquired simultaneously by integrating signal over time. Spectral resolution is determined by the bandwidth of the VIS pulse and on the monochromator-camera combination. The narrower the bandwidth of VIS pulse, the better the SFG spectral resolution.
Comparison of different SFG spectrometres
Narrowband Picosecond Scanning Spectrometer | Broadband Femtosecond High Resolution Spectrometer |
---|---|
Narrowband mid-IR excitation, only one band is excited. Coupled states can be separated. | Simultaneous exsitation and recording of broad vibration spectrum with high resolution. |
High mid-IR pulse energy. Less influence of IR absorbtion in the air. | High mid-IR intensity at low pulse energy – suitable for biological or other water containing samples. |
No reference spectrum needed, IR energy measured at each spectral point. | Optically coupled IR and VIS channels. Reduced complexity and increased stability of the system. |
System is more simple, lower ambient conditions requirements, easier to maintain. | Hight repetition rate up to 1 kHz. |
Features and Design
The SFG spectrometer developed by Ekspla engineers is a nonlinear spectrometry instrument, convenient for everyday use. Ekspla manufactures SFG spectrometers, which are used by chemists, biologists, material scientists, and physicists. The spectrometer has many features that help to set up measurements and to make successful vibrational spectroscopy studies. For chemical and biochemical laboratories, this makes the Ekspla SFG spectrometer a reliable workhorse with a broad spectral region, automatically tuned from 1,000 to 4,300 cm-1, a high spectral resolution (2 or 6 cm-1), and easily controlled adjustment of polarisation optics.
The Ekspla SFG system is based on a mode-locked Nd:YAG laser with a 29 ps pulse duration, with 30 – 40 mJ pulse energy at 1,064 nm and a 50 Hz repetition rate. The VIS channel of the SFG spectrometer consists of part of a laser output beam, usually with doubled frequency (532 nm) up to 0.5 mJ. The main part of the laser radiation goes to an optical parametric generator (OPG) with a difference frequency generation (DFG) extension. The IR channel of the spectrometer is pumped by the DFG output beam with energy in the range of ~40 – 200 μJ. Infrared light can be tuned in a very broad spectral range from 2.3 up to 10 (optionaly up to 16) μm. The bandwidth is 2 or 6 cm-1 (depending on the selected OPG model) and it is one of the main factors of SFG spectrometer spectral resolution. The second beam (VIS) is also narrowband at <2 cm-1.
The spectrometer detection system has a temporal gate. It reduces noise collection and ambient light influence, which allows the spectrometer to be used even in a brightly illuminated room. The spectrometer does not have any acoustic noise because the laser is pumped by diodes. The spot size of the IR beam is adjustable. In this way, the appropriate energy density is achieved to avoid damaging the sample. Spectrum scanning, polarisation control and VIS beam attenuation are controlled from a computer. The spectrometer has a motorized polarisation switch for the IR, optionaly for the VIS, and optionaly the generated SFG light beams . Special detectors continuously monitor the energy of the VIS and mid-IR laser pulses, so IR energy is checked at each measurement point. This makes it easy to normalize the resulting SFG vibrational spectrum.
System Components
- Picosecond mode-locked Nd:YAG laser
- Multichannel beam delivery unit
- Picosecond optical parametric generator
- Spectroscopy module
- Monochromator
- PMT based signal detectors
- Data acquisition system
- Dedicated LabView® software package for system control
Spectroscopy module, sample compartment
A large sample compartment can be customised and enables the use of various extensions and additional instruments for simultaneous control of the sample conditions, including a Langmuir-Blodgett trough for air/water and lipid/air interface studies, temperature and humidity-controlled cells, and other instruments.
SPECTRAL RANGE OF THE SFG SPECTROMETER
The spectral range of the infrared beam determines available vibrational spectra and the spectral range of the spectrometer.
The main modification of the spectrometer enables a spectral range of 1,000 to 4,300 cm-1.
SFG Spectrometer available with a shorter spectral range 2,500 to 4,300 cm-1.
SFG spectrometer with extended vibrational frequency range. Using an additional crystal in the laser light source, the range of the spectrometer expands by up to 625 cm-1. This opens a fingerprint spectral region for the analysis of many inorganic compounds, the vibrations of ions and biomolecules.
Safety of the SFG spectrometer
The spectrometer is safe to use: all high energy pulsed beams are enclosed. In addition, the sample area also has a special cover. During the measurements, it is possible to close the sample compartment so that radiation cannot penetrate outside. The automatic change of polarisation and energy attenuation makes it possible to perform measurements without opening the spectrometer. Laser safety precautions are required only for the alignment of the laser beams on the studied surface.
Modifications and Options
Modifications
- Double resonance SFG spectrometer – allows investigation of vibrational mode coupling to electron states at a surface
- Phase sensitive SFG spectrometer – allows measurement of the complex spectra of surface nonlinear response coefficients
Options
- Single or double wavelength VIS beam: 532 nm and/or 1064 nm
- One or two detection channels: main signal and reference
- Second harmonic generation surface spectroscopy option
- High resolution option – down to 2 cm-1
- Motorized VIS and IR beams alignment system
- Motorized polarisation control for VIS and SFG beams
- Larger SFG box for Langmuir trough
Double resonance SFG spectrometer
Both IR and VIS wavelengths are tunable in Double resonance SFG spectrometer model.
This two-dimensional spectroscopy is more selective than single resonant SFG. Double resonant SFG allows investigation of vibrational mode coupling to electron states at a surface. Double resonance enables the use of another wavelength for VIS beam if the sample has strong absorption at 532 nm and 1064 nm. A range 420 – 680 nm is typically used for VIS beam.
Two outputs PL2230 laser is used for this spectrometer.
Phase-sensitive SFG spectrometer
SFG spectrometer with additional phase sensitive measurements option. A phase sensitive spectrometer allows the measurement the phase of nonlinear susceptibility χ(2). Reference and test samples are used and the SFG phase difference between them is scanned. The real and imaginary parts of second order susceptibility are calculated from the experimental results. Such an approach enables the unambiguous determination of the orientation of molecular groups at the interface.
Phase sensitive measurements with spectral resolution up to 6 cm⁻¹ (2 cm⁻¹).
In conventional SFG-VS intensity of SF signal is measured. It is proportional to the square of second order nonlinear susceptibility ISF ~ | χ(2) |2. However, χ(2) is complex, and for complete information, we need to know both the amplitude and the phase. This will allow us to determine the absolute direction in which the bonds are pointing and characterize their tilt angle with respect to the surface. Measurement of the phase of an optical wave requires an interference scheme. Mixing the wave of interest with a reference wave of known phase generates an interference pattern, from which the phase of the wave can be deduced.
In practice Phase-sensitive SFG experimental setup includes two samples generating SF signal simultaneously. One sample (usually called local oscillator) has well known and flat spectral response. Second one is investigated sample. The excitation beams are directed to first sample, where SFG beam is generated. Later all three beams are retranslated to the second sample, where another SFG beam is generated. Due to electromagnetic waves coherence both SFG beam are interfering. Setup contains the phase modular located on the SFG beam path between samples. We are able to change the phase of SFG beam by rotating it. This way we are recording two-dimensional interfererogram with wavelength and phase shift on x and y axis. Using fitting algorithms we are able to calculate the amplitude and phase of SF signal.
Phase sensitive SFG + Classic SFG Spectrometer in one unit
Interference measurements of SFG signals from reference sample and the investigated sample for Phase-sensitive configuration.
Switchable setup. Phase sensitiv / “Classic” (“Advanced”) ; Top/ Bottom configuration. Switch: VIS beam manual. IR mirrors motorised, BaF₂ lens manual. Path length to the sample is same in all configuration. Motorised polarisation control. VIS beam 532 nm. IR 2.3 – up to 10 (16) µm.
Options
- Spectrometer has “classic” and “Phase-sensitive” properties
- Easy switching between setups
- Adjustable spot size for classic configuration
Narrowband SFG system <2 cm-1
Spectral resolution in of narrowband SFG is determined by light source – OPA. Monochromator is used only as filter.
Light source for IR: PG511. Line width of mid-IR < 2 cm-1.
Synchronously pumped optical parametric generator with OPO with long focal length resonator.
Components & Optional Accessories
Picosecond mode-locked Nd:YAG laser
The heart of the spectrometer is solid-state picosecond laser. Its reliability is critical to perfect spectrometer operation and relevance of measured data. Two standard models of high energy lasers are dedicated for SFG spectrometers. Model PL2230 is fully diode pumped, which means that master oscillator and all following amplification stages are diode pumped. It features great long term parameters stability and minimal maintenance requirements.
This model provides up to 40 mJ per pulse output energy, which in most cases is enough for pumping OPG and VIS channel of SFG spectrometer. Model PL2230 is available for double resonance SFG. This model usually is used for pumping of two independent OPG’s. Such configuration is used in double resonance SFG version.
Multichannel beams delivery unit
Fundamental laser radiation needs to be split into several channels and converted to different wavelenghts. Tunable IR radiation is generated in picosecond optical parametric generator (OPG). Large portion of laser output is converted into second or third harmonics and used for OPG pumping. Residual beam is spatially filtered, delayed and directed into SFG spectrometer as VIS channel. Usually it is converted into second harmonic (532 nm), but in some cases can be used also at fundamental wavelength (1064 nm) or tunable in visible range, when second OPG is used.
Multichannel beams delivery unit SFGHX00 series provides all these features. Additionally it contains automatized VIS channel input energy monitoring and control. The VIS channel wavelength (if double wavelenght option is included) is changed manually. Setup also includes all needed separators and filters to block residual radiation and prevent it from reaching a sample.
Picosecond optical parametric generator
PG501 series picosecond optical parametric generator (OPG) feature high pulse energy and narrow linewidth. It is used for generation of tunable wavelength in broad spectral range. In SFG spectrometer it provides middle infrared radiation for IR channel. DFG stage extends tuning range to mid IR, which corresponds to molecular vibrational fingerprints. Depending of OPG model, DFG output can cover spectral range 2.3 – 10 µm or 2.3 – 16 µm. All residual wavelengths are carefully filtered preventing residual radiation from reaching a sample.
Visible laser pointer is installed inside each unit and aligned in-line with IR beam. It helps to manage invisible mid IR radiation and direct it through multiple optical elements into a sample. Some SFG-VS studies require better than 6 cm-1 spectral resolution. In such cases Ekspla offers unique design PG511 series OPG. In this system seed is generated in synchronously pumped optical parametric oscillator (SPOPO), which is temporally synchronized with laser regenerative amplifier. In this configuration radiation spectral width is narrowed down to 2 cm-1 in mid IR range.
standard geometries
However, in some experiments one layer of the sample can be transparent only for VIS beam, but not for IR beam and vice versa. In such case experimental setup requires different geometries. This problem can be solved, if we can access interface from different sides, for example directing VIS beam from the top and IR beam from the bottom. Ekspla offers several standard geometries: top side, bottom side, top-bottom side and total internal reflection. All of them can be implemented in single spectroscopy unit and easy interchangeable. The special design of SFG spectrometer provides possibility to change angles of interaction. This feature together with different polarization combinations helps better understand molecular dipoles orientation.
In our spectrometer we use large aperture parabolic mirror. The sample is places in focal point of parabolic mirror. Such solution makes optical system extremely simple in operation, because it guarantee the same beams position on the sample surface and perfect overlap, when incidence angle is changed.
Sample surface and beams overlap can be monitored using camera installed above sample area. This utility is integrated into every SFG spectrometer. On a special request sample visualization system can be combined with motorized beams adjustment. This allows to align SFG spectrometer from PC, even being physically far from it. It essentially solves safety issues and opens new possibilities for multiple long time experiments without accessing spectroscopy box.
SFG Spectrometer Accessories
- Six axis sample holder
- Sealed temperature controlled sample chamber
- Larger sample area- space for Langmuir trough
- Motorisation of polarisation control of VIS and IR beams, polarisation analyser for SFG signal
Polarisation Control Options
Simultaneous measurement of S and P polarisation
S and P polarisation of the SFG signal are detected during the same measurement in the dual polarisation detection system.
Motorized polarisation control of SFG, VIS, IR
The SFG spectrometer has a motorized polarisation switch for the IR, VIS, and the generated SFG light beams. The automatic change of polarisation and energy attenuation makes it possible to perform measurements without opening the spectrometer.
- Motorized switching of IR – standard
- Motorized control in small steps of SFG, VIS – optionally
Specifications
Version 1) | SFG Classic | SFG Advanced | SFG Double Resonance | SFG Phase Sensitive |
---|---|---|---|---|
SYSTEM (general) | ||||
Spectral range | 1000 – 4300 cm-1 | 625 – 4300 cm-1 | 1000 – 4300 cm-1 | 1000 – 4300 cm-1 |
Spectral resolution | <6 cm-1 (optional <2 cm-1) | <10 cm-1 | <6 cm-1 (optional <2 cm-1) |
|
Spectra acquisition method | Scanning | |||
Sample illumination geometry | Top side, reflection (optional: bottom side, top-bottom side, total internal reflection) | |||
Incidence beams geometry | Co-propagating, non-colinear (optional: colinear) | |||
Incidence angles | Fixed, VIS ~60 °, IR ~55 ° (optional: tunable) | Fixed, VIS ~60 °, IR ~55 ° | ||
VIS beam wavelength | 532 nm (optional: 1064 nm) | 532 nm and tunable 420 – 680 nm | 532 nm | |
Polarization (VIS, IR, SFG) | Linear, selectable “s” or “p”, purity > 1:100 | |||
Beam spot on the sample | Selectable, ~150 – 600 µm | Fixed | ||
Sensitivity | Air-water spectra | Solid sample | ||
PUMP LASERS 2) | ||||
Model | PL2231-50 | PL2231A | PL2231-50 | |
Pulse energy | Optimised to pump PG | |||
Pulse duration | 29 ± 5 ps | |||
Pulse repetition rate | 50 Hz | |||
OPTICAL PARAMETRIC GENERATORS | ||||
IR source with standard linewidth (<6 cm-1) | PG501-DFG1 | PG501-DFG2 | PG501-DFG1 | |
IR source with narrow linewidth (<2 cm-1) | PG511-DFG | PG511-DFG2 | inquire | PG511-DFG |
UV-VIS source for Double resonance SFG | – | PG401 | – | |
For standard specifications please check the brochure of particular model | ||||
PHYSICAL DIMENSIONS (footprint) | ||||
Standard | 2700 × 1000 mm | 3000 × 1500 mm | 2700 × 1200 mm | |
Extended (with special options or large accessories) | 2800 × 1200 mm | 3000 × 1500 mm | 2800 × 1200 mm |
- Due to continuous product improvements, specifications are subject to changes without advance notice.
- Laser is optimised for pumping parametrical generator, maximum output energy may be different than specified for stand alone application.
Publications
Structure Determination of Hen Egg-White Lysozyme Aggregates Adsorbed to Lipid/Water and Air/Water Interfaces
Related applications: Laser Spectroscopy SFG
We use vibrational sum-frequency generation (VSFG) spectroscopy to study the structure of hen egg-white lysozyme (HEWL) aggregates adsorbed to DOPG/D2O and air/D2O interfaces. We find that aggregates with a parallel and antiparallel β-sheet structure together with smaller unordered aggregates and a denaturated protein are adsorbed to both interfaces. We demonstrate that to retrieve this information, fitting of the VSFG spectra is essential. The number of bands contributing to the VSFG spectrum might be misinterpreted, due to interference between peaks with opposite orientation and a nonresonant background. Our study identified hydrophobicity as the main driving force for adsorption to the air/D2O interface. Adsorption to the DOPG/D2O interface is also influenced by hydrophobic interaction; however, electrostatic interaction between the charged protein’s groups and the lipid’s headgroups has the most significant effect on the adsorption. We find that the intensity of the VSFG spectrum at the DOPG/D2O interface is strongly enhanced by varying the pH of the solution. We show that this change is not due to a change of lysozyme’s and its aggregates’ charge but due to dipole reorientation at the DOPG/D2O interface. This finding suggests that extra care must be taken when interpreting the VSFG spectrum of proteins adsorbed at the lipid/water interface.
Hydrogen bonding interactions of H2O and SiOH on a boroaluminosilicate glass corroded in aqueous solution
Related applications: Laser Spectroscopy SFG
Hydrogen bonding interactions play an important role in many chemical and physical processes occurring in bulk liquids and at interfaces. In this study, hydrous species (H2O and Si-OH) on nano-porous alteration layers (gels) formed on a boroaluminosilicate glass called International Simple Glass corroded in aqueous solutions at pH 7 and pH 9, and initially saturated with soluble silicon-containing species were analyzed using linear and non-linear vibrational spectroscopy in combination with molecular dynamics simulations. The simulation results revealed various possible types of hydrogen bonds among these hydrous species in nanoconfinement environments with their populations depending on pore-size distribution. The nano-porous gels formed on corroded glass surfaces enhance hydrogen bond strength between hydrous species as revealed by attenuated total reflectance infrared spectroscopy. Sum frequency generation spectroscopy showed some significant differences in hydrogen bonding interactions on alteration layers formed at pH 7 and pH 9. The glass dissolution under the leaching conditions used in this study has been known to be ten times faster at pH 7 in comparison to that at pH 9 due to unknown reasons. The simulation and experimental results obtained in this study indicate that the water mobility in the gel formed at pH 9 could be slower than that in the gel formed at pH 7, and as a result, the leaching rate at pH 9 is slower than that at pH 7.
Vibrational Relaxation Lifetime of a Physisorbed Molecule at a Metal Surface
Related applications: Laser Spectroscopy Pump-probe Spectroscopy SFG
Previous measurements of vibrational relaxation lifetimes for molecules adsorbed at metal surfaces yielded values of 1–3 ps; however, only chemisorbed molecules have been studied. We report the first measurements of the vibrational relaxation lifetime of a molecule physisorbed to a metal surface. For CO(v=1) adsorbed on Au(111) at 35 K the vibrational lifetime of the excited stretching mode is 49±3 ps. The long lifetime seen here is likely to be a general feature of physisorption, which involves weaker electronic coupling between the adsorbate and the solid due to bonding at larger distances.
Reconfiguration of interfacial energy band structure for high-performance inverted structure perovskite solar cells
Related applications: Laser Spectroscopy SFG
Charged defects at the surface of the organic–inorganic perovskite active layer are detrimental to solar cells due to exacerbated charge carrier recombination. Here we show that charged surface defects can be benign after passivation and further exploited for reconfiguration of interfacial energy band structure. Based on the electrostatic interaction between oppositely charged ions, Lewis-acid-featured fullerene skeleton after iodide ionization (PCBB-3N-3I) not only efficiently passivates positively charged surface defects but also assembles on top of the perovskite active layer with preferred orientation. Consequently, PCBB-3N-3I with a strong molecular electric dipole forms a dipole interlayer to reconfigure interfacial energy band structure, leading to enhanced built-in potential and charge collection. As a result, inverted structure planar heterojunction perovskite solar cells exhibit the promising power conversion efficiency of 21.1% and robust ambient stability. This work opens up a new window to boost perovskite solar cells via rational exploitation of charged defects beyond passivation.
Heavy Anionic Complex Creates a Unique Water Structure at a Soft Charged Interface
Related applications: Laser Spectroscopy SFG
Ion hydration and interfacial water play crucial roles in numerous phenomena ranging from biological to industrial systems. Although biologically relevant (and mostly smaller) ions have been studied extensively in this context, very little experimental data exist about molecular-scale behavior of heavy ions and their complexes at interfaces, especially under technologically significant conditions. It has recently been shown that PtCl6 2− complexes adsorb at positively charged interfaces in a two-step process that cannot fit into well-known empirical trends, such as Hofmeister series. Here, a combined vibrational sum frequency generation and molecular dynamics study reveals that a unique interfacial water structure is connected to this peculiar adsorption behavior. A novel subensemble analysis of molecular dynamics simulation results shows that after adsorption PtCl6 2− complexes partially retain their first and second hydration spheres and that it is possible to identify three different types of water molecules around them on the basis of their orientational structures and hydrogen-bonding strengths. These results have important implications for relating interfacial water structure and hydration enthalpy to the general understanding of specific ion effects.
This in turn influences interpretation of heavy metal ion distribution across, and reactivity within, liquid interfaces.
Vibrational fingerprint of localized excitons in a two-dimensional metal-organic crystal
Related applications: Laser Spectroscopy SFG
Long-lived excitons formed upon visible light absorption play an essential role in photovoltaics, photocatalysis, and even in high-density information storage. Here, we describe a self-assembled two-dimensional metal-organic crystal, composed of graphene-supported macrocycles, each hosting a single FeN4 center, where a single carbon monoxide molecule can adsorb. In this heme-like biomimetic model system, excitons are generated by visible laser light upon a spin transition associated with the layer 2D crystallinity, and are simultaneously detected via the carbon monoxide ligand stretching mode at room temperature and near-ambient pressure. The proposed mechanism is supported by the results of infrared and time-resolved pump-probe spectroscopies, and by ab initio theoretical methods, opening a path towards the handling of exciton dynamics on 2D biomimetic crystals.
Aggregation States of Poly(4-methylpentene-1) at a Solid Interface
Related applications: Laser Spectroscopy SFG
A thin film of poly(4-methylpentene-1) (P4MP1) was prepared on a quartz substrate, which was a model system of an interface in filler-reinforced semicrystalline polymer composites. Grazing-incidence wide-angle X-ray diffraction measurements revealed that P4MP1 in the thin film after isothermal crystallization formed a Form I crystal polymorph composed of a tetragonal unit cell with a 72 helix, in which the chain axis was oriented along the direction parallel to the quartz interface. Combining sum-frequency generation vibrational spectroscopy with molecular dynamics simulation enabled us to gain access to the local conformation of P4MP1 chains at the quartz interface and the changes that occurred with isothermal crystallization. Finally, the way in which the initial chain orientation at the substrate interface impacted the crystalline structure in the thin film was discussed.
Segregation of an amine component in a model epoxy resin at a copper interface
Related applications: Laser Spectroscopy SFG
We have studied the chemical composition of the epoxy and amine components, HDGEBA and CBMA, of an epoxy resin in close proximity to a copper interface by using ADXPS in conjunction with SFG vibrational spectroscopy. A bilayer sample of epoxy resin and copper was first prepared on a solid substrate before etching the copper layer just before the interface with Ar+ beams. Using ADXPS, in which an incident X-ray was guided from the copper surface, it was found that the CBMA component was preferentially segregated at the copper interface, with the segregation extending over ~10 nm. SFG spectroscopy was used to confirm the above observation. Postulating that copper ions diffused from the metal copper into the internal phase during the curing process and reacted with amine groups to form copper complexes, the interfacial segregation of CBMA can be understood. This knowledge should be useful for understanding and controlling the adhesive properties of epoxy resins.
High-performance graphdiyne-based electrochemical actuators
Related applications: Laser Spectroscopy SFG
Electrochemical actuators directly converting electrical energy to mechanical energy are critically important for artificial intelligence. However, their energy transduction efficiency is always lower than 1.0% because electrode materials lack active units in microstructure, and their assembly systems can hardly express the intrinsic properties. Here, we report a molecular-scale active graphdiyne-based electrochemical actuator with a high electro-mechanical transduction efficiency of up to 6.03%, exceeding that of the best-known piezoelectric ceramic, shape memory alloy and electroactive polymer reported before, and its energy density (11.5 kJ m−3) is comparable to that of mammalian skeletal muscle (~8 kJ m−3). Meanwhile, the actuator remains responsive at frequencies from 0.1 to 30 Hz with excellent cycling stability over 100,000 cycles. Furthermore, we verify the alkene–alkyne complex transition effect responsible for the high performance through in situ sum frequency generation spectroscopy. This discovery sheds light on our understanding of actuation mechanisms and will accelerate development of smart actuators.
Sum Frequency Generation Vibrational Spectroscopy for Characterization of Buried Polymer Interfaces
Related applications: Laser Spectroscopy SFG
Sum frequency generation vibrational spectroscopy (SFG-VS) has become one of the most appealing technologies to characterize molecular structures at interfaces. In this focal point review, we focus on SFG-VS studies at buried polymer interfaces and review many of the recent publications in the field. We also cover the essential theoretical background of SFG-VS and discuss the experimental implementation of SFG-VS.
Structure of the Fundamental Lipopeptide Surfactin at the Air/Water Interface Investigated by Sum Frequency Generation Spectroscopy
Related applications: Laser Spectroscopy SFG
The lipopeptide surfactin produced by certain strains of Bacillus subtilis is a powerful bio-surfactant possessing potentially useful antimicrobial properties. In order to better understand its surface behaviour, we have used surface sensitive Sum Frequency Generation (SFG) vibrational spectroscopy in the C-H and C=O stretching regions to determine its structure at the air/water interface. Using surfactin with the leucine groups of the peptide ring perdeuterated we have shown that the majority of the SFG signals arise from the 4 leucine residues. We find that surfactin forms a robust film, and that its structure is not affected by the number density at the interface or by pH variation of the sub-phase. The spectra show that the ring of the molecule lies in the plane of the surface rather than perpendicular to it, with the tail lying above this, also in the plane of the interface.
A structural and temporal study of the surfactants behenyltrimethylammonium methosulfate and behenyltrimethylammonium chloride adsorbed at air/water and air/glass interfaces using sum frequency generation spectroscopy
Related applications: Laser Spectroscopy SFG
Molecular scale information about the structure of surfactants at interfaces underlies their application in consumer products. In this study the non-linear optical technique of Sum Frequency Generation (SFG) vibrational spectroscopy has been used to investigate the structure and temporal behaviour of two cationic surfactants used frequently in hair conditioners. SFG spectra of films of behenyltrimethylammonium methosulfate (BTMS) and behenyltrimethylammonium chloride (BTAC) were recorded at the air/water interface and on glass slides following Langmuir Blodgett (LB) deposition. The assignment of the BTMS and BTAC spectral features (resonances) to the C--H stretching modes of the surfactants was consolidated by comparison with the SFG spectrum of deuterated cetyltrimethylammonium bromide (d-CTAB) and by recording spectra on D2O as well as on water. The C--H resonances arise from the methylene and methyl groups of the tail and head-groups of the surfactants. A slow collapse mechanism was observed following film compression of both BTAC and BTMS. The change in molecular structure of the films undergoing this slow collapse was followed by recording sequential SFG spectra in the C--H region, and by monitoring the SFG intensity at specific wavenumbers over time. Additionally, LB deposition onto glass was used to capture the state of the film during the slow collapse, and these SFG spectra showed close similarity to the corresponding spectra on water. Complementary Atomic Force Microscopy (AFM) was used to elucidate the layering of the compressed and relaxed films deposited onto mica by LB deposition.
Discovery of Cellulose Surface Layer Conformation by Nonlinear Vibrational Spectroscopy
Related applications: Laser Spectroscopy SFG
Significant questions remain in respect to cellulose’s structure and polymorphs, particularly the cellulose surface layers and the bulk crystalline core as well as the conformational differences. Total Internal Reflection Sum Frequency Generation Vibrational Spectroscopy (TIR-SFG-VS) combined with conventional SFG-VS (non-TIR) enables selectively characterizing the molecular structures of surface layers and the crystalline core of cellulose, revealing their differences for the first time. From the SFG spectra in the C-H and O-H regions, we found that the surface layers of Avicel are essentially amorphous while the surface layers of Iβ cellulose are crystalline but with different structural and spectroscopic signatures compared with its crystalline core. The differences between hydrogen bonding networks of cellulose surface and crystalline core were also shown by the SFG signal. The discovery here represents yet another instance of the importance of spectroscopic observations in transformative advances to understand the structure of the cellulosic biomass.
Sum frequency generation vibrational spectroscopy (SFG-VS) for complex molecular surfaces and interfaces: Spectral lineshape measurement and analysis plus some controversial issues
Related applications: Laser Spectroscopy SFG
Sum-frequency generation vibrational spectroscopy (SFG-VS) was first developed in the 1980s and it has been proven a uniquely sensitive and surface/interface selective spectroscopic probe for characterization of the structure, conformation and dynamics of molecular surfaces and interfaces. In recent years, there have been many progresses in the development of methodology and instrumentation in the SFG-VS toolbox that have significantly broadened the application to complex molecular surfaces and interfaces. In this review, after presenting a unified view on the theory and methodology focusing on the SFG-VS spectral lineshape, as well as the new opportunities in SFG-VS applications with such developments, some of the controversial issues that have been puzzling the community are discussed. The aim of this review is to present to the researchers and students interested in molecular surfaces and interfacial sciences up-to-date perspectives complementary to the existing textbooks and reviews on SFG-VS.
The complex nature of calcium cation interactions with phospholipid bilayers
Related applications: Laser Spectroscopy SFG
Understanding interactions of calcium with lipid membranes at the molecular level is of great importance in light of their involvement in calcium signaling, association of proteins with cellular membranes, and membrane fusion. We quantify these interactions in detail by employing a combination of spectroscopic methods with atomistic molecular dynamics simulations. Namely, time-resolved fluorescent spectroscopy of lipid vesicles and vibrational sum frequency spectroscopy of lipid monolayers are used to characterize local binding sites of calcium in zwitterionic and anionic model lipid assemblies, while dynamic light scattering and zeta potential measurements are employed for macroscopic characterization of lipid vesicles in calcium-containing environments. To gain additional atomic-level information, the experiments are complemented by molecular simulations that utilize an accurate force field for calcium ions with scaled charges effectively accounting for electronic polarization effects. We demonstrate that lipid membranes have substantial calcium-binding capacity, with several types of binding sites present. Significantly, the binding mode depends on calcium concentration with important implications for calcium buffering, synaptic plasticity, and protein-membrane association.
Platelet-adhesion behavior synchronized with surface rearrangement in a film of poly(methyl methacrylate) terminated with elemental blocks
Related applications: Laser Spectroscopy SFG
Poly(methyl methacrylate) (PMMA) terminated with elemental blocks containing polyhedral oligomeric silsesquioxane (POSS), hereafter referred to as PPMP, was synthesized by living anionic polymerization. Combining modern interfacial-sensitive spectroscopy with traditional contact angle measurements, static and dynamic structures at the surface of PPMP films in water were examined. The surface of the well-annealed PPMP films, where the POSS end groups were preferentially segregated, was flat at the sub-nanometer level. Once the PPMP film was immersed in water, the surface was reorganized, and the rate was much slower for PPMP than for the conventional PMMA. This implies that the POSS units hindered the interfacial dynamics of the polymer segments. Then, platelet-adhesion tests were performed on the PPMP films. The number of platelets adhered to the PPMP film was dependent on the pre-immersion time in phosphate-buffered saline before the platelet seeding, whereas that of the reference PMMA film was unaffected by the pre-immersion time. These results could be explained in terms of the aggregation states of water at the interface.
Retrieval of complex χ(2) parts for quantitative analysis of sum-frequency generation intensity spectra
Related applications: Laser Spectroscopy SFG
Vibrational sum-frequency generation (SFG) spectroscopy has become an established technique for in situ surface analysis. While spectral recording procedures and hardware have been optimized, unique data analysis routines have yet to be established. The SFG intensity is related to probing geometries and properties of the system under investigation such as the absolute square of the second-order susceptibility |χ(2)|2 . A conventional SFG intensity measurement does not grant access to the complex parts of χ(2) unless further assumptions have been made. It is therefore difficult, sometimes impossible, to establish a unique fitting solution for SFG intensity spectra. Recently, interferometric phase-sensitive SFG or heterodyne detection methods have been introduced to measure real and imaginary parts of χ(2) experimentally. Here, we demonstrate that iterative phase-matching between complex spectra retrieved from maximum entropy method analysis and fitting of intensity SFG spectra (iMEMfit) leads to a unique solution for the complex parts of χ(2) and enables quantitative analysis of SFG intensity spectra. A comparison between complex parts retrieved by iMEMfit applied to intensity spectra and phase sensitive experimental data shows excellent agreement between the two methods.
Quantitative Sum-Frequency Generation Vibrational Spectroscopy of Molecular Surfaces and Interfaces: Lineshape, Polarization, and Orientation
Related applications: Laser Spectroscopy SFG
Sum-frequency generation vibrational spectroscopy (SFG-VS) can provide detailed information and understanding of the molecular composition, interactions, and orientational and conformational structure of surfaces and interfaces through quantitative measurement and analysis. In this review, we present the current status of and discuss important recent developments in the measurement of intrinsic SFG spectral lineshapes and formulations for polarization measurements and orientational analysis of SFG-VS spectra. The focus of this review is to present a coherent description of SFG-VS and discuss the main concepts and issues that can help advance this technique as a quantitative analytical research tool for revealing the chemistry and physics of complex molecular surfaces and interfaces.
Unified treatment and measurement of the spectral resolution and temporal effects in frequency-resolved sum-frequency generation vibrational spectroscopy (SFG-VS)
Related applications: Laser Spectroscopy SFG
The lack of understanding of the temporal effects and the restricted ability to control experimental conditions in order to obtain intrinsic spectral lineshapes in surface sum-frequency generation vibrational spectroscopy (SFG-VS) have limited its applications in surface and interfacial studies. The emergence of high-resolution broadband sum-frequency generation vibrational spectroscopy (HR-BB-SFG-VS) with sub-wavenumber resolution [Velarde et al., J. Chem. Phys., 2011, 135, 241102] offers new opportunities for obtaining and understanding the spectral lineshapes and temporal effects in SFG-VS. Particularly, the high accuracy of the HR-BB-SFG-VS experimental lineshape provides detailed information on the complex coherent vibrational dynamics through direct spectral measurements. Here we present a unified formalism for the theoretical and experimental routes for obtaining an accurate lineshape of the SFG response. Then, we present a detailed analysis of a cholesterol monolayer at the air/water interface with higher and lower resolution SFG spectra along with their temporal response. With higher spectral resolution and accurate vibrational spectral lineshapes, it is shown that the parameters of the experimental SFG spectra can be used both to understand and to quantitatively reproduce the temporal effects in lower resolution SFG measurements. This perspective provides not only a unified picture but also a novel experimental approach to measuring and understanding the frequency-domain and time-domain SFG response of a complex molecular interface.
Alkanethiols as Inhibitors for the Atmospheric Corrosion of Copper Induced by Formic Acid: Effect of Chain Length
Related applications: Laser Spectroscopy SFG
Self assembled monolayers (SAMs) of n-alkanethiols of different chain length (4, 6, 8, 12, and 18 carbons in the chain) have been explored as corrosion inhibitors for copper exposed to humidified air containing formic acid, an environment used to mimic accelerated indoor atmospheric corrosion. Near-surface sensitive in-situ infrared reflection/absorption spectroscopy combined with interface sensitive vibrational sum frequency spectroscopy revealed unique molecular information on the role of each SAM during ongoing corrosion. All SAMs protect copper against corrosion, and this ability increases continuously with chain length. Their structural order is high prior to exposure, but an increased disorder is observed as a result of the corrosion process. The protection ability of the SAMs is attributed to a selective hindrance of the corrosion stimulators water, oxygen gas, and formic acid to reach the copper-SAM interface through each SAM, which results in different corrosion mechanisms on SAM protected copper and unprotected copper. This significantly retards the formation of the corrosion products copper hydroxide and copper formate, and results in essentially no formation of cuprite.
Simultaneous measurement of magnitude and phase in interferometric sum-frequency vibrational spectroscopy
Related applications: Laser Spectroscopy SFG
We present a visible-infrared sum-frequency spectroscopic technique that is capable of simultaneously determining the magnitude and phase of the sample response from a single set of experimental conditions. This is especially valuable in cases where the phase stability is high, as in collinear beam geometries, as it enables multiple experiments to be performed without re-measuring the local oscillator phase or the reference phase. After illustrating the phase stability achievable with such a geometry, we provide a technique for quantitatively determining the magnitude and phase from a single set of two-dimensional spectral-temporal interference fringes. A complete demonstration is provided for the C–H stretching frequency region at the surface of an octadecyltricholosilane film.
Phase measurement in nondegenerate three-wave mixing spectroscopy
Related applications: Laser Spectroscopy SFG
A detailed model is presented that describes the temporal and spectral interference patterns resulting from phase-recovery infrared–visible sum-frequency spectroscopy. Included in this model are the effects of dispersive elements other than the phase shifting unit placed between the sample and local oscillator signals. This inclusion is critical when considering the interference patterns arising from studies of buried interfaces. Furthermore, in the midinfrared where it is difficult to have high visibility of the fringes, it is demonstrated that local field corrections have a significant effect on the shape of the interference pattern. By collecting and subsequently fitting a two-dimensional interference pattern displaying both temporal and spectral fringes, a complete characterization of all these effects is possible.
Investigating buried polymer interfaces using sum frequency generation vibrational spectroscopy
Related applications: Laser Spectroscopy SFG
This paper reviews recent progress in the studies of buried polymer interfaces using sum frequency generation (SFG) vibrational spectroscopy. Both buried solid/liquid and solid/solid interfaces involving polymeric materials are discussed. SFG studies of polymer/water interfaces show that different polymers exhibit varied surface restructuring behavior in water, indicating the importance of probing polymer/water interfaces in situ. SFG has also been applied to the investigation of interfaces between polymers and other liquids. It has been found that molecular interactions at such polymer/liquid interfaces dictate interfacial polymer structures. The molecular structures of silane molecules, which are widely used as adhesion promoters, have been investigated using SFG at buried polymer/silane and polymer/polymer interfaces, providing molecularlevel understanding of polymer adhesion promotion. The molecular structures of polymer/solid interfaces have been examined using SFG with several different experimental geometries. These results have provided molecularlevel information about polymer friction, adhesion, interfacial chemical reactions, interfacial electronic properties, and the structure of layerbylayer deposited polymers. Such research has demonstrated that SFG is a powerful tool to probe buried interfaces involving polymeric materials, which are difficult to study by conventional surface sensitive analytical techniques.
Probing the Orientation and Conformation of α-Helix and β-Strand Model Peptides on Self-Assembled Monolayers Using Sum Frequency Generation and NEXAFS Spectroscopy
Related applications: Laser Spectroscopy SFG
The structure and orientation of amphiphilic α-helix and β-strand model peptide films on self-assembled monolayers (SAMs) have been studied with sum frequency generation (SFG) vibrational spectroscopy and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. The α-helix peptide is a 14-mer, and the β-strand is a 15-mer of hydrophilic lysine and hydrophobic leucine residues with hydrophobic periodicities of 3.5 and 2, respectively. These periodicities result in the leucine side chains located on one side of the peptides and the lysine side chains on the other side. The SAMs were prepared from the assembly of either carboxylic acid- or methyl-terminated alkyl thiols onto gold surfaces. For SFG studies, the deuterated analog of the methyl SAM was used. SFG vibrational spectra in the C-H region of air-dried peptides films on both SAMs exhibit strong peaks near 2965, 2940, and 2875 cm-1 related to ordered leucine side chains. The orientation of the leucine side chains was determined from the phase of these features relative to the nonresonant gold background. The relative phase for both the R-helix and β-strand peptides showed that the leucine side chains were oriented away from the carboxylic acid SAM surface and oriented toward the methyl SAM surface. Amide I peaks observed near 1656 cm-1 for the R-helix peptide confirm that the secondary structure is preserved on both SAMs. Strong linear dichroism related to the amide π* orbital at 400.8 eV was observed in the nitrogen K-edge NEXAFS spectra for the adsorbed β-strand peptides, suggesting that the peptide backbones are oriented parallel to the SAM surface with the side chains pointing toward or away from the interface. For the α-helix the dichroism of the amide π* is significantly weaker, probably because of the broad distribution of amide bond orientations in the α-helix secondary structure.
Study of self-assembled triethoxysilane thin films made by casting neat reagents in ambient atmosphere
Related applications: Laser Spectroscopy SFG
We studied four trialkoxysilane thin films, fabricated via self-assembly by casting neat silane reagents onto hydrophilic SiOx/Si substrates in the ambient. This drop-casting method is simple, yet rarely studied for the production of silane self-assembled monolayers (SAMs). Various ex-situ techniques were utilized to systematically characterize the growth process: Ellipsometry measurements can monitor the evolution of film thickness with silanization time; water droplet contact angle measurements reveal the wettability; the change of surface morphology was followed by Atomic Force Microscopy; the chemical identity of the films was verified by Infrared–Visible Sum Frequency Generation spectroscopy. We show that the shorter carbon chain (propyl-) or branched (2-(diphenylphosphino)ethyl-) silane SAMs exhibit poor ordering. In contrast, longer carbon chain (octadecyl and decyl) silanes form relatively ordered monolayers. The growth of the latter two cases shows Langmuir-like kinetics and a transition process from lying-down to standing-up geometry with increasing coverage.